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ABSTRACT 

Students have many unviable preconceptions in physics. Modelling instruction (MI), which gets 

students actively modelling physical phenomena, is reported to improve learning and attitudes. 

This research thus sought to assess the impact of this approach in comparison to regular instruction 

(RI) and interactive engagement (IE) when applied to an introductory physics course in a Quebec 

CEGEP. The hypotheses were that modelling students would perform differently and would 

overall prefer this form of active learning. A mixed-methods design with a strong quantitative 

strand based on a quasi-experiment was used. Learning outcomes were defined as conceptual 

understanding as measured by the FCI and RRMCS, and problem-solving skills as measured on 

the final exam. Based on a qualitative survey, novice MI seemingly produced more dissatisfaction 

than satisfaction, which is consistent with what is reported for other methods fostering IE. Overall, 

this research seems to indicate that novice MI compares to both IE and RI as no statistically 

meaningful difference was found on learning outcomes, with the single exception of FCI post-test 

scores, for which both MI and IE differed from RI. Yet, there appears to be potential that formal 

training and further experience with the method would help tap into. 

 
Keywords: CEGEP, modelling instruction, model-based physics, interactive engagement, 

physics education, introductory physics courses, conceptual learning, Force Concept Inventory, 

FCI, student beliefs, attitudinal survey, attitudes, Colorado Learning Attitudes about Science 

Survey, CLASS, Rotational and Rolling Motion Conceptual Survey, RRMCS, pedagogy. 

 



SUMMARY 

The purpose of this study was to compare modelling instruction with regular instruction 

and interactive engagement in terms of students’ learning outcomes and attitudes toward physics 

in an introductory physics course (Mechanics) in an anglophone CEGEP in Montreal, Quebec, 

Canada. This topic is important because students have many conflicting preconceptions 

challenging their mastery of physics concepts. They also have an erroneous perception of the 

scientific process and the nature of physics.  

Modelling instruction gets students continuously working collaboratively with teammates 

and the whole class, actively modelling a physical phenomenon and using whiteboards to 

exteriorize and communicate their thoughts. The literature shows that modelling instruction 

improves learning gains and attitudes about physics. Therefore, this study proposed to answer three 

research questions. First, how does modelling instruction differ from regular instruction or 

interactive engagement in terms of learning outcomes for CEGEP Mechanics students? Second, 

how does modelling instruction differ from regular instruction or interactive engagement in terms 

of attitudes (or beliefs) about physics for those same students? Third, how are CEGEP Mechanics 

students perceiving (in terms of what they like or don’t like) the introduction of modelling 

instruction? The hypotheses were that students receiving modelling instruction would perform 

differently on assessments of deep conceptual understanding, on an exam testing problem-solving 

skills, and on an assessment of expert-like attitudes. It was also thought that they would overall 

prefer this form of active learning.  
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A mixed-methods design with a strong quantitative strand based on a quasi-experiment was 

used. Learning outcomes were defined as students’ conceptual understanding as measured by 

pre/post-test normalized gains (FCI, RRMCS) and students’ procedural mastery of the 

mathematics (tested in a traditional exam with textbook-like problems). Attitudes about physics 

were defined as students’ self-reported beliefs on a pre/post CLASS test. Non-random, intact group 

samples of Mechanics college students were used. The treatment group was constituted of two of 

the researcher’s sections while the control groups were constituted of ten other sections taught by 

colleagues. Quantitative data were analyzed through a multivariate analysis of variance 

(MANOVA) with p-values ≤ .05 for statistical significance. Then comparisons were made with 

the control groups and the literature. Responses to a qualitative survey were analyzed to 

complement the quantitative analysis.  

Although interactive engagement surpassed regular instruction on normalized conceptual 

gains (43% vs. 29%; 𝑝 = .002 on Games-Howell simultaneous test for differences of means), 

novice modelling instruction couldn’t be statistically distinguished from either interactive 

engagement (41% vs. 43%; 𝑝 = .918) or regular instruction (41% vs. 29%; 𝑝 = .229) for 

conceptual learning outcomes, except on a slightly different measure. It did statistically distinguish 

itself from regular instruction (𝑝 = .019 on Tukey pairwise comparison), on par with interactive 

engagement (𝑝 = .006 on a comparison with regular instruction), only on FCI post-test scores that 

were on average at 66% (mostly like interactive engagement at 64%), whereas they were at 54% 

for regular instruction. The score of 60% is considered the threshold over which a student barely 

begins to adopt Newtonian thinking. FCI normalized gains of modelling instruction and interactive 
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engagement were consistent with what other studies have reported. Regular instruction performed 

better than what has been reported for traditional instruction (29% instead of 22%; 𝑡 = 3.00;  

𝑝 = .004); it is believed the limited use of active learning incorporated into class activities might 

be the cause of it. No statistically meaningful difference was found on procedural learning 

outcomes (𝑝 > .05 on all comparisons). 

Based on the attitudinal CLASS test results, novice modelling instruction couldn’t be 

distinguished from either interactive engagement or regular instruction (𝑝 > .05), all methods 

failing equally at improving attitudes toward physics and its learning. Attitudes didn’t appear to 

worsen either. This observation is surprising for modelling instruction because the literature 

reports it to be one of the rare cases where attitudes typically improve. This demands to be 

investigated further. 

Based on a qualitative survey, the researcher’s novice implementation of modelling 

instruction seemingly produced more dissatisfaction than satisfaction, which in some way is 

consistent with what is reported for other methods fostering interactive engagement, despite 

improved learning. The level of participation in that survey was very low (23%), though, so results 

might not be representative.  

Overall, this research seems to indicate that novice modelling instruction didn’t produce 

better or worse learning gains and attitude shifts than interactive engagement or regular instruction. 

Yet, there seems to be potential that formal training and further experience with the method would 

help tap into, thus justifying further attempts at using modelling instruction under a deliberate 

practice of continuous improvement. 



RÉSUMÉ 

Le but de cette étude était de comparer l'enseignement par modélisation avec 

l'enseignement régulier et l'engagement interactif en termes de résultats d'apprentissage et 

d'attitudes dans un cours d'introduction à la physique (mécanique) dans un cégep anglophone à 

Montréal, Québec, Canada. Ce sujet est important, car les étudiants ont de nombreuses idées 

fausses et contradictoires rendant difficile leur maîtrise des concepts. Ils ont également une 

perception erronée du processus scientifique et de la nature de la physique. 

L'enseignement par modélisation permet aux étudiants de travailler continuellement en 

collaboration avec des coéquipiers et la classe entière, de modéliser activement un phénomène 

physique et d'utiliser des tableaux blancs pour extérioriser et communiquer leur pensée. La 

littérature montre que l'enseignement par modélisation améliore les gains d'apprentissage et les 

attitudes à l'égard de la physique. Par conséquent, cette étude a proposé de répondre à trois 

questions de recherche. Premièrement, en quoi l'enseignement par modélisation diffère-t-il de 

l'enseignement régulier ou de l'engagement interactif en termes de résultats d'apprentissage pour 

les collégiens en mécanique? Deuxièmement, en quoi l'enseignement par modélisation diffère-t-il 

de l'enseignement régulier ou de l'engagement interactif en termes d'attitudes (ou de croyances) à 

l'égard de la physique pour ces mêmes collégiens? Troisièmement, comment les collégiens en 

mécanique perçoivent-ils (en termes de ce qu'ils aiment ou n'aiment pas) l'introduction de 

l'enseignement par modélisation? Les hypothèses étaient que les étudiants recevant l’enseignement 

par modélisation performeraient différemment aux évaluations de compréhension conceptuelle, à 

un examen testant les compétences en résolution de problèmes et à une évaluation des attitudes en 
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termes de ressemblance avec celles des experts. Il était aussi pensé qu’ils préféreraient globalement 

cette forme d’apprentissage. 

Un design quasi expérimental fort, intégré à une approche mixte, a été utilisé pour répondre 

aux questions. Les résultats d'apprentissage furent définis comme la compréhension conceptuelle 

des étudiants mesurée par les gains normalisés avant et après intervention (FCI, RRMCS) et leur 

maîtrise procédurale des mathématiques (testée dans un examen traditionnel avec des problèmes 

typiques de manuel). Les attitudes à l'égard de la physique furent définies comme les croyances 

autodéclarées des étudiants (CLASS), avant et après intervention. Des échantillons intacts non 

aléatoires d'étudiants en mécanique ont été utilisés (groupes classes). Le groupe de traitement était 

constitué de deux sections enseignées par le chercheur tandis que les groupes témoins étaient 

constitués de dix autres sections enseignées par des collègues. Les données quantitatives ont été 

analysées par une analyse multivariée de la variance (MANOVA) avec des valeurs de p ≤ 0,05 

pour la signification statistique. Ensuite, des comparaisons ont été faites avec les groupes témoins 

et la littérature. Les réponses à une enquête qualitative ont été analysées pour compléter l'analyse 

quantitative. 

Bien que l'engagement interactif ait dépassé l'enseignement régulier sur les gains 

conceptuels normalisés (43% contre 29%; 𝑝 = 0,002 sur le test simultané de Games-Howell pour 

les différences de moyennes), l’enseignement novice par modélisation n'a pu être statistiquement 

distingué ni de l’engagement interactif (41% vs 43%; 𝑝 = 0,918) ni de l’enseignement régulier 

(41% vs 29%; 𝑝 = 0,229) pour les résultats d'apprentissage conceptuels, sauf sur une mesure 

légèrement différente. Il ne s’est en effet distingué statistiquement de l'enseignement régulier  
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(𝑝 = 0,019 sur la comparaison par paires de Tukey), tout comme l’a fait l'engagement interactif 

(𝑝 = 0,006 sur une comparaison avec l'enseignement régulier), que sur les scores FCI après 

intervention : une moyenne de 66% (64% pour l'engagement interactif), alors qu’elle est de 54% 

pour l'enseignement régulier. Le score de 60% est considéré comme le seuil au-dessus duquel un 

étudiant commence à peine à adopter une pensée newtonienne. Les gains normalisés du FCI liés à 

l'enseignement par modélisation et à l'engagement interactif étaient conformes à ce que d'autres 

études ont rapporté. L'enseignement régulier a donné de meilleurs résultats que ce qui a été 

rapporté pour l'enseignement traditionnel (29% au lieu de 22%; 𝑡 = 3,00; 𝑝 = 0,004); on pense 

que l'utilisation limitée de l'apprentissage actif incorporé dans les activités en classe pourrait en 

être la cause. Aucune différence statistiquement significative n'a été trouvée sur les résultats 

d'apprentissage procédural (𝑝 > 0,05 dans toutes les comparaisons). 

Sur la base des résultats du test attitudinal CLASS, l'instruction par modélisation novice 

n’a pas pu être distinguée de l'engagement interactif ou de l'enseignement régulier (𝑝 > 0,05), 

toutes les méthodes échouant également à améliorer les attitudes envers la physique et son 

apprentissage. Les attitudes ne semblent pas non plus s’aggraver. Cette observation est surprenante 

pour l'enseignement par modélisation, car la littérature rapporte qu'il s'agit de l'un des rares cas où 

les attitudes s'améliorent généralement. Cela nécessite une enquête plus approfondie. 

Sur la base d'une enquête qualitative, la mise en œuvre novice de l'enseignement par 

modélisation a apparemment produit plus d'insatisfaction que de satisfaction, ce qui est en quelque 

sorte cohérent avec ce qui est rapporté pour d'autres méthodes favorisant l'apprentissage actif. Le 
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niveau de participation à cette enquête était cependant très faible (23%), de sorte que les résultats 

pourraient ne pas être représentatifs. 

En somme, cette recherche semble indiquer que l'enseignement novice par modélisation 

n'a pas produit de gains d'apprentissage ni de changements d'attitude meilleurs ou pires que 

l'engagement interactif ou l'enseignement régulier. Cependant, il semble y avoir du potentiel 

qu’une formation formelle et une expérience plus approfondie de la méthode permettrait 

d'exploiter, justifiant ainsi de nouvelles tentatives d'enseignement par modélisation dans le cadre 

d'une pratique délibérée d'amélioration continue. 
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INTRODUCTION 

The purpose of this study was to compare modelling instruction with regular instruction 

and interactive engagement in terms of students’ learning outcomes and attitudes toward physics 

in an introductory physics course (Mechanics) in an anglophone CEGEP in Montreal, Quebec, 

Canada. This topic, part of Physics Education Research (PER), is important because students have 

many conflicting preconceptions about the way nature operates, hence difficulty mastering physics 

concepts. They also have an erroneous perception of the scientific process and the nature of 

physics. 

Modelling instruction gets students working collaboratively, actively modelling a physical 

phenomenon. This should result in possible explanations that can be shared with fellow students 

for a critical examination leading to improvements, revisions, or paradigm shifts through the 

guidance of the instructor (Halloun and Hestenes, 1987). Whiteboards mediate classroom 

discourse and allow students’ reasoning processes to be exteriorized and open to scrutiny by their 

peers (Megowan, 2007). The literature shows that interactive engagement (IE) in general, and 

modelling instruction (MI) in particular, improve learning gains as measured by the Force Concept 

Inventory, a standardized test used by most studies. It also shows that modelling instruction tends 

to produce positive attitude shifts toward science and physics as measured by the Colorado 

Learning Attitudes about Science Survey (Madsen et al., 2015). 

Therefore, this study proposed to answer three research questions. First, how does 

modelling instruction differ from regular instruction or interactive engagement in terms of learning 
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outcomes for CEGEP Mechanics students? Second, how does modelling instruction differ from 

regular instruction or interactive engagement in terms of attitudes (or beliefs) about physics for 

those same students? Third, how are CEGEP Mechanics students perceiving (in terms of what they 

like or don’t like) the introduction of modelling instruction? 

The hypotheses were that students receiving modelling instruction would perform 

differently on the standardized assessments of deep conceptual understanding, on an exam testing 

problem-solving skills, and on a standardized assessment of expert-like attitudes. It was also 

thought that they would overall prefer this form of active learning. 

To answer research questions, a mixed-methods design, with a strong quantitative strand 

based on a quasi-experiment using standardized pre- and post-tests comparisons, was used. 

Learning outcomes were defined as students’ conceptual understanding as measured by pre/post-

FCI (Force Concept Inventory) and RRMCS (Rotational and Rolling Motion Conceptual Survey) 

normalized gains, plus students’ procedural mastery of the mathematics related to the concepts 

tested in a traditional exam with textbook-like problems. Attitudes about science were defined as 

students’ self-reported beliefs about physics and their physics course on a pre/post-CLASS 

(Colorado Learning Attitudes about Science Survey) test.  

Non-random, intact group samples of Mechanics college students (first year, second 

semester) represented the college population of Quebec. The treatment (modelling instruction) 

group consisted of two of the researcher’s sections (35 students, out of whom 20 consented to 

participate) while the control groups consisted of ten other sections taught by colleagues (103 

students in regular instruction out of whom 83 consented to participate; 71 students in interactive 
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engagement out of whom 61 consented to participate). Near the start of the semester, the FCI, 

RRMCS, and CLASS pre-tests were given, whereas at the end of the semester, the same tests were 

given again as post-tests and a qualitative survey was added to better understand the perception of 

students on the new instructional design. 

Normalized learning gains of averages, averages of normalized gains, effect sizes, and 

averages of normalized changes based on the FCI and the RRMCS tests were computed with 

matched data for both the treatment and control groups. Average group shifts in expert-like 

attitudes, along with effect sizes, were also computed with matched data based on the CLASS test. 

Quantitative data generated by the research were analyzed through a multivariate analysis 

of variance (MANOVA) with p-values ≤ .05 for statistical significance. Then comparisons were 

made with the control groups and the literature. Responses to a qualitative survey were analyzed 

to complement the quantitative analysis. 

As the next few chapters will present in greater detail, it was found that the researcher’s 

novice implementation of modelling instruction couldn’t be distinguished from colleagues’ 

implementation of either interactive engagement or regular instruction (which included some 

interactive teaching on a limited basis) for conceptual or procedural learning outcomes measured 

by the FCI normalized gains and final exam scores, although interactive engagement surpassed 

significantly regular instruction on the FCI. Comparisons couldn’t be made based on the RRMCS. 

Novice modelling instruction did distinguish itself from regular instruction, on par with interactive 

engagement, only on FCI post-test scores that were on average a little over 60%, whereas for 

regular instruction this average was a little below 60%. Considering there was no distinction on 
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pre-test scores, this has some meaning, that is, that the novice implementation of modelling 

instruction, just like other forms of interactive engagement, seems to have brought students slightly 

over the threshold of starting Newtonian thinking, contrary to regular instruction that was nearly 

there, but not quite. When results were compared with the literature, it was found that the FCI 

normalized gains of modelling instruction and interactive engagement were consistent with what 

other studies have reported. Regular instruction performed better than what has been reported in 

the literature for traditional instruction; it is believed the limited percentage of active learning 

incorporated into class activities might be the cause of it. 

It was also found, based on CLASS results, that the researcher’s novice implementation of 

modelling instruction couldn’t be distinguished from colleagues’ implementation of either 

interactive engagement or regular instruction, all methods failing equally at improving attitudes 

toward physics and its learning. Fortunately, attitudes didn’t appear to worsen either. This 

observation is surprising for modelling instruction because the literature reports it to be one of the 

rare cases where attitudes typically improve. 

It was further found, based on a qualitative survey, that the researcher’s novice 

implementation of modelling instruction produced more dissatisfaction than satisfaction, which, 

although saddening, is consistent with what is reported for other, non-modelling methods fostering 

active learning (Wells, 1987; Deslauriers et al., 2019). The level of participation in that survey was 

very low (23%), though, so results might not be representative. 

 



FIRST CHAPTER. PROBLEM STATEMENT 

Students often come to physics courses with many misconceptions, or more properly 

conflicting and incoherent preconceptions that have been rendered obsolete by the scientific 

endeavour. As physics teachers can see when they elicit spontaneous explanations of physical 

phenomena from students, they have constructed naïve personal explanations, based on their 

everyday life experience. These explanations appear viable to them because they work in certain 

circumstances, but students don’t realize that they don’t in others (or they are not bothered by that). 

The power of scientifically accepted conceptions is that they apply more generally to more 

phenomena in a consistent manner, and are therefore more powerful. It is therefore desirable to 

help students evolve and revise their preconceptions toward more viable ones that increase their 

ability to make sense of the larger world of natural phenomena. 

Notably, most of students’ preconceptions or mental representations resemble those of 

Aristotelian or Middle Age physics, before modern experimental science was truly born. An 

example of the former is when students believe that every motion has a cause and that acceleration 

requires an increasing force. An example of the latter is when students believe that an internal 

force (akin to the impetus) proportional to mass and velocity can be imparted to objects by an 

applied force and wear out, consumed by the motion or dissipated by some resistance. Such 

preconceptions are difficult to dislodge (just as it was long for historical science to overcome them, 

keeping in mind that Newtonian mechanics was formulated in Philosophiæ Naturalis Principia 

Mathematica only in 1687) and present obstacles to deep learning and understanding of physics. 

Furthermore, students even have misconceptions about the nature of the field. For many, physics 
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is just a collection of facts and a matter of finding the right formula to solve a given problem, 

which is far from the way physics is perceived and done by scientists. 

Physicists perceive the field as a set of interconnected and coherent constructs organized 

in theories, which they use in developing viable models of reality. An instructional method called 

modelling instruction (MI) has been developed by Halloun and Hestenes (1987) to mirror the real 

practice of science by experts. As scientists, we develop viable models to explain observations and 

make sound predictions. That is the way modelling works, including the social component so 

important to establish accepted scientific theories. In a nutshell, it organizes content around 

scientific models, engage students in constructing those models collaboratively based on 

experiments, and pushes them to test conceptual models that have been developed in new contexts 

leading to a failure that justify a revision and a new cycle of inquiry. This approach appears to 

have tremendous results in conceptual gains based on the Force Concept Inventory (FCI) test. The 

results are such that one could easily be enthused by the idea of implementing this method at the 

core of his or her teaching approach.  

Surprisingly, this modelling method appears not to be well known in Quebec, as the 

researcher hardly found any local reference to it. One can easily find in Quebec complete or partial 

implementations of other types of non-traditional pedagogies such as flipped classrooms, problem-

based learning (PBL), interdisciplinary islands of rationality (IIR), project-based learning (PBL), 

peer instruction (PI), portfolios, reflective writing, and gamification, but the closest approach to 

modelling instruction (MI) that could be found was argument-driven inquiry (ADI), used in some 

secondary schools. However, modelling instruction is becoming more and more popular in 
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American high schools where it has been widely and successfully used. In 2000, the U.S. 

Department of Education selected the modelling instruction program at Arizona State University 

(ASU) as one of seven K-12 educational technology programs designated as exemplary or 

promising out of 134 (Jackson et al., 2008) and in 2001, modelling instruction was recognized as 

one of only two exemplary K-12 science programs out of 27 that were evaluated (U.S. Department 

of Education, 2001). This might explain why, in 2008, Brewe was reporting that approximately 

ten percent of American high school physics teachers have had some formal training in the method. 

According to a private communication with Dr. Colleen Megowan-Romanowicz, about 500 new 

modellers are trained every year through the American Modeling Teachers Association (AMTA), 

over 90% of whom adopt modelling instruction permanently. That would represent 4000-5000 

more teachers since Brewe’s paper.  

Modelling instruction is also used in some American colleges and universities, although it 

is less common in higher education (Brewe, 2006, 2008). This rises some questions about why the 

situation is such. It appears that modelling instruction impact learning outcomes of students 

positively, as will be shown in the literature review, but that it is more easily implemented in high 

schools because of the flexibility it requires. Yet, as mentioned, some college and university 

teachers do use the method. 

Like probably many college and university modelling professors in American colleges and 

universities did in their own context, one could wonder how a whole course of CEGEP physics 

(like Mechanics, Electricity and Magnetism, or Waves and Modern Physics) could be adapted to 

use the method. In modelling instruction, theory classes and laboratory experiments are generally 
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fused into studio classrooms as opposed to being separated. This change might be considered a 

challenge by the current faculty, or else difficult to achieve for lab scheduling reasons. Knowing 

more about modelling instruction would be beneficial before planning future large-scale 

experiments in Quebec. Fostering the implementation of the method by innovative teachers could 

come as a further step in a longer-term project. What we tried to accomplish though this research 

is a more modest first step, by adapting parts of existing modelling instruction materials and 

processes to a complete calculus-based, introductory Mechanics course (Physics NYA). It has been 

chosen to apply the method to a full course because private discussions with practitioners 

emphasized the necessity of a full semester for potential effects to start manifesting. Furthermore, 

doing it for only one unit would probably have not given the students the time to adjust and get a 

grasp of the method. It could also have led to objections regarding the change of method because 

of the increased emphasis on active learning. 

This research is nevertheless important because, as teachers, we want our teaching to be 

effective, and we certainly want our students to understand, master, and retain the concepts that 

we teach. To do so, we need to engage students and find ways that produce deep and meaningful 

learning as opposed to surface or rote learning based on memorization.  

It is also important because citizens of tomorrow need to be scientifically literate and to 

develop higher levels of thinking like the capacity to analyze, evaluate, and create or synthesize. 

This is necessary to make informed judgments and to think critically. This is also necessary to feel 

like having a voice worth of hearing and develop a will to participate in techno-scientific debates 

— like those related to climate change and geoengineering, the use of nanotechnologies, the 



First Chapter. Problem Statement  9 
 

deployment of the 5G network or the use of nuclear power — while being well equipped to oppose 

misinformation from lobbies and groups of interest. 

In summary, this research has studied the effect of modelling instruction (fostering a form 

of interactive engagement or active learning) on learning outcomes and attitudes about science 

when applied to a full calculus-based, introductory mechanics course in CEGEP. This topic, part 

of what is generally called Physics Education Research (PER), is important because students have 

difficulty mastering physics concepts due to numerous conflicting preconceptions. Students also 

have a misunderstanding of the nature of physics. Since physics is a fundamental science, 

improvements in learning gains and attitudes should translate into a better understanding of the 

scientific process and its concepts. 



SECOND CHAPTER. CONCEPTUAL FRAMEWORK 

Methods of teaching physics should be revisited because students have difficulty mastering 

this discipline, often have conflicting preconceptions that impair their understanding, and develop 

fragmented knowledge through rote learning instead of a coherent organization of knowledge 

around core models and principles. This can be observed though the generally low performance of 

students and the struggle they experience in physics classes. Halloun and Hestenes (1985a, 1985b) 

report in particular that students’ (generally erroneous) common-sense beliefs — such as the ideas 

that an object requires a force to be in motion, that every motion needs a cause, that motion is 

produced by the larger of two competing forces, or that an internal force maintains the motion of 

an object independently from external agents — are very stable and lead to a systematic 

misinterpretation of introductory physics courses’ material. Such stable preconceptions due to 

extensive personal experience has also been reviewed more recently by Neidorf, Arora, Erberber, 

Tsokodayi and Mai (2020). To improve learning and provide a more authentic experience fostering 

the development of scientific competencies, it is worth examining the structure and construction 

of scientific knowledge, and how this can inform science education. This is the goal of this chapter, 

which presents the conceptual framework on which this research was designed. 

1. CONSTRUCTION OF SCIENTIFIC KNOWLEDGE 

Hestenes (1987a, 1987b) has produced interesting work on the role of models in scientific 

knowledge. Scientific knowledge is comprised of both factual and procedural knowledge. The 

latter consists of strategies, tactics, and techniques (vaguely called the scientific method) driving 
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a dialectical inference of factual knowledge through an experimental dialogue with nature, which 

tells us what is viable and what is not. Factual knowledge, which holds despite attempts to 

invalidate it, is in turn comprised of a set of theories and models serving to interpret and make 

sense of empirical data. These models are conceptual representations of real things. 

Theories are structured around a framework and a semantic base. The former is a core of 

basic laws relating basic descriptive variables. The latter is made of correspondence rules used to 

interpret and translate the theory into corresponding phenomena, from the abstract and formal to 

the concrete and empirical. On this core is built a superstructure of definitions, conventions, and 

theorems, including derived laws. This superstructure enlarges the applicability and usability of 

the theory to specific subdomains of application. Subdomains encompassed by the superstructure 

grow and evolve as science advances (Hestenes, 1987a, 1987b). 

Theories are used to build models that are essential to the scientist’s understanding of 

nature. In physics, we use representational and mathematical models of objects, interactions, 

systems and processes to describe, explain or predict phenomena. All scientific models have their 

limitations, however, as they are simplifications of reality, constructed as viable representations of 

some of its aspects of interest at a given time in relation to a given project. Nevertheless, these 

models have proven to be highly effective and powerful, as we can see by the progress science has 

enabled humans to achieve. 

Those models are developed in four stages: (1) description, (2) formulation, 

(3) ramification, and (4) validation (Hestenes, 1987a, 1987b). Modelling starts with describing 

objects under study and agents acting on these objects. This is done by providing names identifying 



12  Second Chapter. Conceptual Framework 
 

them and by attributing object, state or interaction descriptors (variables) representing diverse 

properties. These descriptors are then used in state and causal mathematical equations at the second 

stage of formulating the model. The third stage of ramification consists in solving equations, which 

then must be validated in the fourth stage through a reasonableness assessment, or, even better, an 

experimental test. Interpretation is present all through the process, from the start when natural and 

empirical phenomena must be translated into the abstract and formal concepts of the theory, 

through the end when mathematical solutions must be reinterpreted in terms of natural phenomena. 

As can be seen, models are central to the scientific enterprise. Because models are 

considered so central, both Hestenes and the researcher could be said to share a semantic view of 

scientific theories (Develaki, 2007). Scientific theories are viewed as a “family of models” 

respecting the structure and the assumptions of the theory (Giere, 1988). Good scientific models 

and theories are testable, revisable, explanatory, conjectural and generative (Windschitl et al., 

2008). Lattery (2017) proposes to view a scientific model as “a limited (imperfect), inferential, 

and external representation of a physical system” (p. 29). He claims that the goal of the scientific 

modelling process is to build explanatory and empirically accountable conceptual models, or said 

otherwise, to build conceptual models that synthesize at least elements from empirical (the what 

extracted from experimental measurements), physical (the why through some material analogy), 

and prior conceptual models of a physical target system.  

One way to illustrate that with a simple example is to look at what could happen when 

somebody studies the refraction of a monochromatic light beam through a prism of glass. 

Observations could lead to a physical analogy with a motorized toy truck (analogous to the light) 
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moving at constant velocity and passing from concrete (analogous to air) to mud (analogous to 

glass). That in turn could inspire some experiments leading to a mathematical expression of the 

law of refraction describing the phenomenon. Those two models could then be combined in a 

conceptual model of light rays moving in straight lines at a constant speed till they hit the boundary 

of a medium where the light moves at a lower speed. At the boundary, the transmitted light rays 

behave like the law of refraction describes. A new physical analogy could be taught of, like a 

safeguard (analogous to light) running to save a swimmer in distress in the shortest time possible. 

The optimal path, from sand (analogous to air) to water (analogous to glass) would correspond to 

the law of refraction. Combined with the empirical model, this could lead to a further development 

of the conceptual model by incorporating Fermat’s principle of least time. By using such a simple 

example and thinking of others, it can already be seen how the semantic, model-centred view of 

scientific knowledge development might be transferred to the classroom, and that’s what the next 

few sections explore. 

2. SCIENCE EDUCATION 

As science teachers, if we want to facilitate students’ learning of science, then we must 

question ourselves about the essence of science and the goal(s) of science education. It appears 

that the results of current science education are poor. Surface knowledge is the norm and the failure 

rate is high (Sadler & Tai, 2001). We already alluded to several obstacles — such as conflicting 

preconceptions and formula-centred rote learning — facing students who study physics. So, what 

ought we do? 
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There is evidence from cognitive science that interactive engagement will foster deeper 

learning because of the activation of neural pathways leading to long-term memory, hence 

retention of more usable and transferable knowledge (DeHaan, 2005). This complements the 

socio-constructivist perspective that argues for in-class learning activities that engage students 

with one another so they can construct better knowledge through socio-cognitive conflict (Perret-

Clermont et al., 2004). Referring to the work of Piaget who theorized that learning was achieved 

through the processes of assimilation and accommodation (Piaget, 1950), deep learning of viable 

concepts in physics, which often contradict naïve intuition based on common sense and personal 

experience, requires teachers to foster accommodation through sound management of cognitive 

conflicts. This means that teachers should strategically place students in situations where their 

preconceptions are challenged and guide them on the side through the process of revising and 

replacing them with more viable conceptions, namely Newtonian concepts if the course is on 

classical mechanics. McKagan, Perkins, and Wieman (2007) have summarized key principles of 

reformed physics education as the following:  

1. Interactive engagement can lead to higher learning gains (Hake, 1998); 

2. Directly addressing common misconceptions can lead to higher learning gains (McDermott, 

2001);  

3. Unless student beliefs about science are explicitly addressed, these beliefs tend to become more 

novice-like (Redish et al., 1998; Perkins et al., 2005);  

4. People have a limited short-term memory, so the course should focus on important points, have 

a coherent structure, and eliminate nonessential details to reduce the cognitive load (Mayer, 

2003);  
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5. For students to gain a conceptual understanding, all aspects of the course, including homework 

and exams, must address conceptual understanding, not just numerical problem-solving.  

There are many ways we can imagine applying these ideas in class, for it is the aim of most 

reformed pedagogies. Modelling instruction is one of them, with the particularity of being centred 

on the authentic process of scientific modelling. 

3. MODELLING INSTRUCTION 

Modelling instruction (MI) is a method of teaching sciences, based on a socio-

constructivist, interactive pedagogy, meaning that learning is viewed as socially situated and 

constructed through interactions with others. This method was developed by physicists Halloun 

and Hestenes (1987) at Arizona State University (ASU), and further adapted to high school physics 

by Malcolm Wells (Wells et al., 1995). The main idea is to get students working collaboratively, 

actively modelling physical phenomena in a way that reflects scientific practice more 

authentically. This should result in possible explanations that can be shared with fellow students 

for a critical examination leading to improvements, revisions, or paradigm shifts under the 

guidance of the instructor. The goal is to arrive at a deeper understanding of the why and how of 

both phenomena and the scientific process itself.  

More specifically, modelling instruction is a mode of dialectical teaching by which 

cognitive conflicts are resolved rationally, mirroring the scientific dialectical inference of experts 

who seek a rational resolution to conflicts between presently available information and 

incompatible conceptual frameworks. This process is a reflection of the self-regulation process of 
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human cognition (assimilation and accommodation) presented by Piaget (1950). Dialectical 

teaching requires that students formulate their common-sense beliefs explicitly, check their 

consistency with empirical evidence, check their consistency with other beliefs they hold, and 

compare them with alternative beliefs, in particular relevant scientific beliefs (Hestenes, 1987b). 

In the case of modelling instruction, this is achieved through cycles of model development and 

model deployment. The first stage comprises pre-lab discussions, lab investigations, and post-lab 

discussions, while the second stage may comprise worksheet exercises, quizzes, lab practicums 

and unit tests to assess learning (Jackson et al., 2008). This is ideally implemented, when available, 

in studio classrooms where it is easier to merge theory and practice as needed, rather than splitting 

the two between the classroom and the laboratory on a fixed schedule as it is normally done in 

traditional courses. 

Interestingly, the modelling cycle is consistent with Vygotsky’s ideas of social construction 

(Vygotsky, 1962, 1978) through social interactions and language mediation. Based on his ideas, 

Adey, Shayer and Yates (2001) have developed five pillars of teaching: concrete preparation, 

cognitive conflict, construction, metacognition and bridging. These pillars can be used to 

summarize key aspects of the modelling instruction. The concrete preparation is akin to the very 

practical paradigm lab. The cognitive conflict happens often as students face failing 

preconceptions (exposed by carefully planned activities) or observe new phenomena for which 

prior models fail. Construction happens when students restructure their mental schemata following 

prompts for cognitive assimilation and accommodation, helped by board meetings and Socrative 

dialogue. Metacognition is fostered through questions like “How did you solve that?” or “Please 

explain to the others in your group why you think that.” Bridging is a principle that is used through 



Second Chapter. Conceptual Framework  17 
 

deployment activities, like when the modeller wants to bring students to the realization that a table 

deforms under an applied force and pushes back as a normal force, even though this deformation 

is not observable to the naked eye. That is the target concept, often difficult for students, so the 

modeller takes a few steps back and discuss a case that presents no issue to students: a person 

pushing on a spring and feeling the spring pushing back. Then a few intermediary cases (bridges) 

are explored to eventually culminate in the acceptance and deep understanding of the target 

concept (Camp & Clement, 2010). Bridging can also be seen as making links to the broader 

curriculum and to real life. Modellers do refer back to previous models or elements and tools 

thereof as they progress to the study of new phenomena, and they do make connections with real 

life as they strategically and indirectly confront unviable preconceptions arising from naïve and 

limited real-life experience. There is bridging between inconsistent, unexamined student models 

of nature and more viable and robust models developed by scientists. 

4. CONCLUDING REMARKS 

Considering the previous exposition of our conceptual framework (mapped in figure 1), 

this research has undertaken to study a small part of the problem stated earlier, which was 

concerned with the difficulty students experience learning physics due to their conflicting 

preconceptions on the subject matter and the way science is done by professional scientists. The 

purpose of this study was therefore to compare modelling instruction (treatment group) with 

regular instruction and interactive engagement (control groups) in terms of students’ learning 

outcomes and attitudes toward physics (dependent variables) in an anglophone CEGEP in 

Montreal, Quebec, Canada. This was done by focusing on the following three research questions: 
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1. How does modelling instruction differ from regular instruction or interactive engagement in 

terms of learning outcomes for CEGEP Mechanics students? 

2. How does modelling instruction differ from regular instruction or interactive engagement in 

terms of attitudes (or beliefs) about physics for CEGEP Mechanics students? 

3. How are CEGEP Mechanics students perceiving (in terms of what they like or don’t like) the 

introduction of modelling instruction? 

The first question was useful to assess if modelling instruction would be more efficient 

than other methods in evolving students’ common-sense beliefs about the natural world toward a 

Newtonian perspective that might in turn help students develop problem-solving skills on more 

robust foundations. The second question was useful to assess how modelling instruction differed 

in fostering beliefs or attitudes about physics that would be more in line with those of expert 

physicists, for it was believed that expert-like attitudes and a deeper understanding of the nature 

of science lead to more stable, authentic and meaningful learning while also possibly fostering 

sound civic engagement. The third question was essentially designed to gain insight about the 

appreciation of students of the modelling approach, as it is also believed that a positive perception 

would lead to greater participation and motivation, thus enhanced learning for students. 
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Figure 1.  Overview of the conceptual framework. 



THIRD CHAPTER. LITERATURE REVIEW 

Equipped with the conceptual framework presented in the previous chapter, it is worth 

researching the literature to further understand novice conceptions and behaviours of students in 

physics, modelling instruction and the way it is operationalized in the classroom, the reported 

effectiveness of the method, and the current state of its adoption in higher education. Findings are 

reported in this chapter. Research questions are then presented and framed against this literature 

review and the conceptual framework previously discussed. 

1. NOVICE CONCEPTIONS AND BEHAVIOURS 

Lattery (2017) defines deep leaning in science as being able to explain how and why target 

scientific concepts succeed while prior ones fail, including processes convincingly bridging from 

the latter to the former, and how those target concepts apply and transfer to new physical situations. 

A lack of attention to students’ conflicting preconceptions often lead to shallow or rote learning. 

Actually, two major misconceptions deprive students of deep, meaningful learning in Newtonian 

physics: the impetus and dominance principles. The former pretends that force is something 

objects acquire to move, contradicting the first and second laws of Newton. The latter pretends 

that when two objects interact, the larger or more active object exerts a greater force, contradicting 

the third law of Newton. Those two common misconceptions seriously limit the understanding of 

the concept of force at the centre of Newtonian mechanics. Working on them tends to pave the 

way for eliminating many other misconceptions without direct intervention because most of them 
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rely on a faulty conceptualization of force, which is at the heart of the impetus and dominance 

principles (Hestenes, 1992). 

Furthermore, Malone (2008) reports, based on other research, how novice problem-solving 

strategies differ from expert ones (table 1) and how different teaching methods, namely modelling 

versus traditional, can impact the evolution of those strategies. Malone actually completed two 

studies: one on how modelling instruction influences students’ cognitive structures, and another 

one on how it influences problem-solving and metacognition. In those studies, modelling appeared 

to foster more expert-like strategies. In particular, modelling students tended to classify problems 

based on deep structure (e.g., uniformly accelerated motion, Newton’s second law, etc.) more than 

nonmodellers who seemed to privilege surface features (e.g., inclined plane, springs, etc.). This 

makes sense if one recalls that models are at the centre of the scientific process and, as Malone 

(2008) reports, that modelling instruction aims at helping students organize knowledge around 

such basic physics models, with multiple representations. Furthermore, modelling instruction 

continually asks students to explain how they know what they say and to evaluate their 

conclusions. 
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Table 1. Comparison of expert and novice problem-solving strategies as presented by Malone 

(2008, p. 020107-7). 

Expert behaviours Novice behaviours 
• Typically use a working forward strategy 

except on more difficult problems. 
• Perform an initial qualitative analysis of the 

problem situation. 
• Construct diagrams during solution process. 
• Spend time planning approach sometimes via 

models of the physical situation. 
• Use fewer equations to solve problems. 
• Usually solve problems in less time. 
• Refer to the physical principles underlying the 

problem. 
• Concepts more coherent and linked together. 

 
• Fewer errors—concepts usually deployed 

correctly. 
• Can use more than one representation to solve 

problems—which usually allows them to 
deviate to other solution paths when stuck. 

• Check and evaluate solution by a variety of 
methods (i.e., more flexible). 

• Rarely refer to problem statement or text. 

• Typically use a working backward strategy. 
 

• Usually manipulate equations discovered via 
equation hunting. 

• Rarely construct or use diagrams. 
• Rarely plan approach, simply dive in. 

 
• Use more equations to solve problems. 
• Usually take more time to solve problems. 
• Refer to the numeric elements of the problem. 

 
• Concepts not coherent and lack applicability 

conditions for special cases. 
• More errors—concepts usually deployed 

incorrectly. 
• Usually only utilize a numeric representation 

to solve problems—once they become stuck 
rarely can free themselves. 

• Superficially check solution if at all. 
 
• Frequently refer to problem statement and 

textbook (especially examples). 
 

2. MODELLING INSTRUCTION 

Modelling instruction has been widely used in American high schools, with great success 

in terms of conceptual gains and attitude shifts compared to traditional methods (Brewe, 2006, 

2008). Within this didactical framework, an emphasis is put on the construction and application of 

models (Jackson et al., 2008). These models are viable constructs built in accordance with the 

natural world. They are temporal and constantly validated and refined (Brewe, 2008). This is done 
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in a context where the focus is put on inquiry, observation, collaboration, communication, and 

reasoning, with an instructor acting as a questioner rather than a provider of knowledge (Megowan, 

2010). 

2.1 Model construction 

In high school Newtonian mechanics (USA), Hestenes (1997) identifies five basic particle 

models which can be subdivided into kinematical and causal models: (1) constant velocity and free 

particle models; (2) constant acceleration and constant force models; (3) simple harmonic 

oscillator and linear binding force models; (4) uniform circular motion and central force (with 

constant radius) models; (5) collision and impulsive force models. On the other hand, Brewe 

(2002) identifies six major general models in introductory physics: (1) particle model; (2) rigid-

body model; (3) constant acceleration model; (4) free-particle model; (5) harmonic oscillator 

model; (6) field model.  

When adapted to specific situations, general models become specified models, which can 

then be used to solve specific physics problems. Common modelling tools are mainly systemic 

like the system schema, accounting like energy pie charts, energy bar charts, and the “equation of 

everything” (the first law of thermodynamics about energy conservation), or functional like 

interaction energy graphs, potential graphs and equipotential surfaces (Brewe, 2002). Other 

modelling tools that can be exploited are state diagrams, motion maps, kinematic graphs, force or 

free-body diagrams, momentum vectors, field lines and field vectors. Models represent the 

structure in a system or process, and such structure can be systemic (composition, environment, 

connections), geometric (position, configuration), temporal (descriptive, causal), or interactive 
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(interaction laws) (Hestenes, 1997). Hestenes (2006) later added the object structure (intrinsic 

properties) as a fifth type, but the researcher would argue that it could also be seen as a detailed 

part of the composition component of the systemic structure. Figure 2 summarizes the process of 

constructing a model from a given situation and figure 3 represents the structure in a model for the 

modified Atwood’s machine, as explained by Hestenes (1997).  

 
Figure 2. Model construction as presented by Hestenes (1997, p. 948). 

A benefit of using such models and representations, besides giving a more authentic 

experience of the process of science, is that they offer multiple modes of access to a target physical 

system by which a student can understand and explain it. Thus, they deepen understanding and 

give meaning as not only the how, but also the why are described. These cognitive tools also bridge 

between the concrete and the abstract, and most useful for college students who still struggle on 

their way to formal reasoning (Torkia-Lagacé, 1981), from the visual to the mathematical. 
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Figure 3. Representation of structure in a model for the modified Atwood’s machine as 

presented by Hestenes (1997, p. 944). 
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2.2 The modelling cycle 

Modelling instruction revolves around the modelling cycle, which students go through 

multiple times, as in a spiral of repeated practice. Figure 4 presents the method as outlined by 

Hestenes (1997), with phases of (1) Model Development, (2) Evaluation, and (3) Application in 

concrete situations. The first part of the figure describes the main objectives of the method whereas 

the second part summarizes how to apply modelling in the classroom. 

Similarly, Colleen Megowan (2010) split the modelling cycle in three phases: (1) Model 

Construction, (2) Model Testing and Elaboration, and (3) Model Application. In the first stage, a 

paradigm lab helps students to collaboratively identify a model and its parameters. That paradigm 

lab generates a series of conversations leading students to organize what they know and what they 

want to know, generate testable hypotheses, seek evidence and construct an argument (Windschitl 

et al., 2008). This ends with a post-lab “board meeting” where student-centred discussions occur. 

In the second phase, the model is collaboratively refined and tested through a variety of tasks and 

problems that elicit a better mastery of the model initially identified. This is preceded by some 

homework serving the same purpose. In the third phase, students use the model to solve more 

complex and contextualized problems, either as homework or in-class whiteboarding exercises. 

This is completed by a final lab practicum and a final unit assessment testing their ability to solve 

qualitative and quantitative problems. She recommends groups of three students for collaborative 

work that occurs before whole-class board meetings essentially led by students themselves. 
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MODELLING METHOD SYNOPSIS 

The Modelling Method aims to correct many weaknesses of the traditional lecture-demonstration 
method, including the fragmentation of knowledge, student passivity, and the persistence of naïve beliefs 
about the physical world. 

What to teach: Model-centred instructional objectives 

• To engage students in understanding the physical world by constructing and using scientific models 
to describe, to explain, to predict, to design and control physical phenomena. 

• To provide students with basic conceptual tools for modelling physical objects and processes, 
especially mathematical, graphical and diagrammatic representations. 

• To familiarize students with a small set of basic models as the content core of physics. 
• To develop insight into the structure of scientific knowledge by examining how models fit into 

theories. 
• To show how scientific knowledge is validated by engaging students in evaluating scientific models 

through comparison with empirical data. 
• To develop skill in all aspects of modelling as the procedural core of scientific knowledge. 

How to teach: Student-centred instructional design 

• Instruction is organized into modelling cycles which engage students in all phases of model 
development, evaluation and application in concrete situations –– thus promoting an integrated 
understanding of modelling processes and acquisition of coordinated modelling skills. 

• The teacher sets the stage for student activities, typically with a demonstration and class discussion 
to establish common understanding of a question to be asked of nature. Then, in small groups, 
students collaborate in planning and conducting experiments to answer or clarify the question. 

• Students are required to present and justify their conclusions in oral and/or written form, including a 
formulation of models for the phenomena in question and evaluation of the models by comparison 
with data. 

• Technical terms and representational tools are introduced by the teacher as they are needed to sharpen 
models, facilitate modelling activities and improve the quality of discourse. 

• The teacher is prepared with a definite agenda for student progress and guides student inquiry and 
discussion in that direction with “Socratic” questioning and remarks. 

The teacher is equipped with a taxonomy of typical student misconceptions to be addressed as students 
are induced to articulate, analyze and justify their personal beliefs. 

 

Figure 4. The modelling method as outlined by Hestenes (1997, p. 941). 
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The specifics of the modelling cycle have also been detailed in terms of two stages 

(Hestenes, 1997; Jackson et al., 2008): (1) Model Development and (2) Model Deployment. In 

Model Development, a demonstration and a pre-lab discussion are followed by a lab investigation 

(without pre-printed instructions) and a post-lab discussion. Technical terms and representational 

tools are introduced here, and both Socratic dialogue and whiteboarding (the use of little 

whiteboards by teams of students to work out their ideas and mediate the conversation) are 

extensively used. Model Deployment makes use of worksheets, followed by quizzes, a lab 

practicum, and a unit test.  

For Brewe (2008), the modelling cycle rather consists of five stages: (1) Introduction and 

Representations, (2) Coordination of Representations, (3) Application, (4) Abstraction and 

Generalization, and (5) Refinement. The stage of Introduction and Representations creates a need 

for a new model through an inquiry-based laboratory activity and introduces basic concepts and 

graphs. The Coordination of Representations relates graphs to more common graphical or 

diagrammatical representations. The Application stage develops equations and applies knowledge 

and tools to solve problems and draw conclusions. The stage of Abstraction and Generalization 

identifies common features of special cases where the model is applicable. Refinement improves 

upon the model based on encounters with new situations. 

2.3 Modelling discourse management 

Dwain Desbien (2002) has made an important contribution to modelling discourse 

management in response to some observations that were gathered, starting in 1995, through 

interviews of honours university physics students that had went through a course using a prior 
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version of modelling instruction. The main points were that many students felt that the 

representational tools were a burden they would gladly skip if not marked on them, that physics 

homework and exams should look like those found in a mathematics, and that conceptual questions 

were unfair because understanding can be shown by the manipulation of equations. In Desbien’s 

words, “the problem solution was not to change the class activities, but rather change how the class 

was managed. Students needed to develop the models themselves. The epistemology of science 

needed to be explicit. Use of shared representational tools needed to be developed collaboratively. 

The class needed to be a community working together like scientists through peer-peer interaction. 

Modeling discourse management was developed to meet these goals” (p. 49). In his dissertation, 

he describes a superior, socio-constructivist modelling method of instruction as being based on 

seven elements: 

1. There is a deliberate creation of a cooperative learning community.  

2. This community experiences an explicit need for the creation of models in science.  

3. Through the process, students create inter-individual meaning.  

4. Teachers seed elements in the discussion through well-thought interactions with individual 

groups.  

5. Teachers intentionally don’t close the discussion at the end of class; instead, adequate follow-

up is provided.  

6. They foster inter-student discussion by not controlling or not being involved at all in whole-

class discussions.  

7. Finally, they actively evaluate students formatively. 
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Based on his research, Desbien (2002) showed that modelling discourse management 

seemed to improve both students’ understanding and views about science compared to both 

traditional teaching and traditional modelling classroom management. 

2.4 Whiteboarding and board meetings 

Whiteboarding is a central feature of modelling instruction (Megowan, 2007) and relates 

to the theory of inscriptions of Roth and McGinn (1998). It mediates classroom discourse and 

allows students’ reasoning processes to be exteriorized and open to scrutiny by their peers. It is 

potentially a very effective way to detect misconceptions and to address them, but certain 

conditions must be met for this to be successful.  

1. Instructors must be able to listen to students engaged in productive inscription-mediated 

discourse leading to model construction.  

2. They must also have a clear picture of how the model ought to look and possess a good mastery 

of metaphors and language linked to students’ misunderstanding.  

3. Teachers should also develop the skill to orient discourse without giving answers, and they 

should be aware of how student inscriptions on whiteboards relate to their thinking about 

models.  

4. Finally, instructors should know about the cultural models of schooling students bring to the 

class and the new models that can be set in their place with skillful management of classroom 

activities.  
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Collaborative work can be a waste of time when not properly managed. Besides skillful 

management from teachers, a curriculum based on a sound choice of tasks fostering inter-student 

discourse, within their zone of proximal development — the zone where learning is challenging 

but achievable with guidance and encouragement — (Vygotsky, 1962, 1978), is essential. 

2.5 Benefits of modelling instruction 

There are many advantages to modelling instruction. From a cognitive perspective, it 

simplifies the content and reduces the cognitive load on working memory (Gerjets & Scheiter, 

2003; Paas et al., 2003) by organizing it around a small number of general models, allowing better 

and easier learning. Furthermore, it allows students to appreciate physics’ coherence as knowledge 

is integrated and connected to prior models that have been refined; it is more reflective of the way 

physicists think and work (thus it is more authentic); and it develops transferable problem-solving 

skills as the ability to develop, test and refine models is one that is shared by other technoscientific 

disciplines (Brewe, 2006, 2008). It also fosters intelligent engagement in public discourse and 

debate about technoscientific issues (Jackson et al., 2008). Desbien (2002) noticed in his 

dissertation that modelling discourse in university physics improved retention rates during first 

and second semesters at Phoenix institutions part of his research.  

3. EFFECTIVENESS OF MODELLING INSTRUCTION 

Various studies and meta-analyses have already been performed to assess the effectiveness 

of modelling instruction in high schools, community colleges and universities (e.g., Hake, 1998; 

Hestenes, 2000, 2006; Brewe et al., 2010; Madsen et al., 2015). Although none have been found 
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related to the special context of Quebec’s CEGEP system, it is worth exploring and reporting what 

resulted from those other studies. 

3.1 Conceptual understanding of mechanics 

Physics education research widely relies on the Force Concept Inventory (FCI) to get 

insights into the learning outcomes of students in mechanics (Madsen et al., 2017a). It assesses, 

according to Hestenes (1997), “the effectiveness of mechanics courses in meeting a minimal 

performance standard: to teach students to reliably discriminate between the applicability of 

scientific concepts and naïve alternatives in common physical situations” (p. 937). This is a 

standardized test for which validity and reliability have been demonstrated (Jackson et al., 2008). 

Details of this multiple-choice questions test are described by Hestenes, Wells, and Swackhamer 

(1992). Henderson (2002) has estimated that in his practice at the University of Minnesota, at most 

2.8% of students don’t take the FCI seriously when it is ungraded, compared to 0.6% when it is 

graded. If cases in which students refuse to take the test (0.5%) or leave a lot of blanks (1.4%) are 

removed because they are easily extracted from the sample, at most 0.9% of students might have 

lower scores on ungraded tests. The percentage appears low enough not to require a grading of the 

FCI. Furthermore, Henderson has verified that post-test results are not affected in any statistically 

significant manner by the FCI being given as a pre-test. It should be noted that students are never 

told that they will have to answer the same questionnaire at the end of the semester when they are 

given the FCI at the beginning of classes. Hestenes and Halloun (1995) consider FCI scores of 

60% as the entry threshold to Newtonian physics and 85% as the Newtonian mastery threshold. 

This means that at 60% students barely begun to use Newtonian concepts coherently in their 
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reasoning, and below their thinking would displays such characteristics as “(1) undifferentiated 

concepts of velocity and acceleration; lacking a vectorial concept of velocity; (2) lacking a 

universal force concept (i.e., believing that there are other influences on motion besides forces), 

and unable to reliably identify the agents of forces on an object; (3) fragmented and incoherent 

concepts about force and motion” (p. 505). This also means that above 85%, students could be 

considered as confirmed Newtonian thinkers. 

Seven thousand five hundred (7,500) American high school physics students were involved 

in the Modelling Instruction Project in 1995–1998. Hestenes (2006) reports 29%/69% 

pre-test/post-test means for expert modellers compared to 26%/52% for novice modellers and 

26%/42% for traditional teachers involved in his sample. The average gain of students taught by 

expert modellers was more than two standard deviations higher than for traditional teachers. This 

is consistent with results for 20,000 students (Hestenes, 2000) collected between 1994 and 2000: 

26%/69% pre-test/post-test means for expert modellers compared to 26%/53% for novice 

modellers and 26%/42% for traditional teachers. Vesenka, Beach, Munoz, Judd, and Key (2002) 

also tested modelling instruction in undergraduate algebra-based physics courses of two 

universities and found that students achieved over a one-half standard deviation from those 

receiving traditional lectures, while their FCI normalized gains were two times greater. In 2016, a 

meta-analysis of 63 papers on FCI gains, representing 31,000 students in 450 classes, was 

performed. It was found that the mean normalized gain is 22% for traditional lectures and 39% for 

interactive engagement (Von Korff et al., 2016). 
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3.2 Attitudes and beliefs about physics 

Studies based on the Maryland Physics Expectations Survey (MPEX), the Epistemological 

Beliefs Assessment for Physical Science (EBAPS), the Colorado Learning Attitudes about Science 

Survey (CLASS) and the Views of the Nature of Science (VNOS) survey have repeatedly shown 

that students of all ages have difficulty learning how science knowledge is constructed and in most 

cases regress in sophistication over a semester-long science course (Otero & Gray, 2008). 

Recently, Madsen, McKagan, and Sayre (2015) published a meta-analysis of twenty-four North 

American studies, based on the CLASS and the MPEX, that looked into the attitudes or beliefs of 

students about physics and how closely they aligned with those of experts. The surveys asked 

students questions about how they learn physics, how physics is related to their everyday lives, 

and how they think about the discipline of physics. They report that student attitudes often 

deteriorate as they go through typical (even reformed) physics classes, but that on the contrary, 

significant improvements result from an explicit focus on model-building and developing expert-

like beliefs. They submit that the teaching method is the main factor, although the class size and 

the student population also explain part of the variance in shifts. They report that in most large 

calculus-based courses students often leave with the belief that physics is about memorizing facts 

and plugging numbers into equations, and not relevant to their life. Modelling instruction would 

perform better possibly because it makes student work in small groups to mimic the way scientists 

create knowledge and develop models with multiple representational tools, using labs to refine or 

revise conceptions and using whiteboard and board meeting discussions to arrive at consensus. By 

having a more authentic experience of physics, students would develop more expert-like beliefs 

about the field. The positive impact of modelling instruction is consistent with results from Brewe, 
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Kramer and O’Brien (2008, 2009) at Florida International University (USA) and those of 

de la Garza and Alarcon (2010) at Tecnológico de Monterrey (Mexico). 

4. ADOPTION OF MODELLING INSTRUCTION IN HIGHER EDUCATION 

Despite positive results, impediments slow down the widespread adoption of modelling 

instruction in higher education. Modelling instruction is best implemented using a hands-on 

approach that fits well with studio-format classes where the separation between theory and 

experiments is removed, and it requires reduced content coverage in favour of deeper 

understanding and skills. Furthermore, there is a lack of university-level resources and most 

textbooks, with rare exceptions like Chabay and Sherwood’s Matter and Interaction series (2015), 

are not fostering a model-centred approach by ignoring the role of models and often omitting any 

extensive use of multiple representations (Brewe, 2006, 2008). 

It is, therefore, useful to consider how a partial and novice implementation of some aspects 

of modelling instruction would impact learning outcomes in the context of CEGEPs where no 

studies on that type of teaching have been undertaken. If significant learning gains or attitude shifts 

are detected despite an imperfect implementation, this could encourage early adoption which could 

be improved over time as expertise is built. On the other hand, if no significant gains are detected, 

this could inform the community of educators about the necessity of thorough formal training for 

a successful implementation. 
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5. RESEARCH QUESTIONS AND HYPOTHESES 

This research was guided by two main quantitative questions, each of which are presented 

with its associated research hypothesis and the statistically null hypothesis. 

Q1: How does modelling instruction differ from regular instruction or interactive engagement in 

terms of learning outcomes for CEGEP Mechanics students? 

H1: CEGEP Mechanics students receiving modelling instruction, compared to regular 

instruction or interactive engagement, will perform differently on pre/post standardized 

assessments (FCI, RRMCS) of deep conceptual understanding and on more traditional 

exams testing problem-solving skills. 

H0: CEGEP Mechanics students receiving modelling instruction, compared to regular 

instruction or interactive engagement, will perform equivalently on pre/post standardized 

assessments (FCI, RRMCS) of deep conceptual understanding and on more traditional 

exams testing problem-solving skills. 

Q2: How does modelling instruction differ from regular instruction or interactive engagement in 

terms of attitudes (or beliefs) about physics for CEGEP Mechanics students? 

H2: CEGEP Mechanics students receiving modelling instruction, compared to regular 

instruction or interactive engagement, will perform differently on a pre/post standardized 

assessment (CLASS) of attitudes (or beliefs) about physics. 
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H0: CEGEP Mechanics students receiving modelling instruction, compared to regular 

instruction or interactive engagement, will perform equivalently on a pre/post standardized 

assessment (CLASS) of attitudes (or beliefs) about physics. 

A third qualitative question complemented the main quantitative ones. Its purpose was to 

gain insight into the appreciation and motivation of students experiencing modelling instruction, 

for it is believed that a positive perception enhance learning.  

Q3: How are CEGEP Mechanics students perceiving (in terms of what they like or don’t like) the 

introduction of modelling instruction? 

It is expected that students receiving modelling instruction will overall prefer this form of 

active learning. 

A comparative study of student learning outcomes and attitudes about physics from 

different instructional formats has been performed to address the first two questions. The mode of 

instruction (modelling instruction vs. interactive engagement or regular instruction) was the 

independent variable (IV) whereas the learning outcomes and attitudes or beliefs about physics 

were the dependent variables (DV1 and DV2). A first learning outcome (DV1.1) was understood 

and operationalized as students’ conceptual understanding as measured by pre/post standardized 

test score gains in the Mechanics (Physics NYA) course (expressed in different forms later 

described). Another learning outcome (DV1.2) was the students’ procedural mastery of the 

mathematics related to the concepts that were assessed in a more traditional final exam with 

textbook-like problems to solve. Attitudes about physics (DV2) was understood and 
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operationalized as students’ self-reported beliefs about physics and its learning on pre/post 

standardized tests validated for this purpose (and again expressed in different forms later 

described). A qualitative survey, on the other hand, inquired about students’ perceptions of the 

instructional design and thus addressed the third question. 

 



FOURTH CHAPTER. METHODOLOGY 

This research used a mixed-methods design with a strong quantitative strand based on a 

quasi-experiment using pre- and post-test comparisons to answer the first and second research 

questions about learning outcomes and attitude shifts. The third research question was addressed 

by a survey with open-ended questions to gain qualitative feedback from students receiving 

modelling instruction. That second qualitative phase aimed at placing the results of the first 

quantitative phase in context and exploring participants’ views in more depth. The whole design 

is described in further detail in this chapter. 

1. TARGET POPULATION AND SAMPLES 

To represent the anglophone college population of first-year science students attending the 

researcher’s college in Montreal, Quebec, non-random, intact group samples of Mechanics 

students (first year, first semester) were used because they were convenient. Furthermore, it would 

have been unrealistic to perform a random sampling that would have necessitated to move students 

around, changing their scheduling, their teacher, and their classmates. Those samples were classes 

of about 35 students, some of which have been combined for statistical analysis as they received 

similar instruction. They were typically aged about 17-18 years old. The proportion of males or 

females was quite variable from one class to another. Females accounted from about 40% up to 

72% in individual classes, but merging classes by modes of instruction brought the proportion 

between 45% and 60%. Correspondingly, the proportion of males would be between 55% and 

40%. 



40  Fourth Chapter. Methodology 
 

The researcher’s college currently receives about 8700 students per year, with slightly less 

than 25% in Continuing Education. According to its strategic plan (Vanier College, 2015), it is the 

most multicultural anglophone CEGEP with 94 different countries of origin and one fourth of 

students born outside Quebec. The student population is mostly female (about 55% in Fall 2013). 

Most students don’t take a full charge in courses and delay graduation (71% in pre-university 

studies, 55% in career programs, in Winter 2013). 

Students taking Mechanics (Physics NYA) are typically spread between three programs: 

200.B1 Health Science, 200.B2 Pure and Applied Science, and 200.C0 Computer Science and 

Mathematics. If they followed the regular path of studies in Quebec, it is their second all-physics 

course, their first one being Secondary V Physics taken normally the year before in high school. 

To improve external validity, a statistical analysis of the pre-FCI and pre-CLASS data was 

performed to gain information about the initial physics knowledge and attitude differences 

between groups. 

2. METHOD 

Sections of Mechanics studied in this quasi-experiment research were selected based on 

the willingness of teachers to participate. Two of the researcher’s day sections and ten from 

colleagues teaching the same course in the same semester were studied.  

The treatment group was made of the researcher’s sections to better control conditions of 

learning/teaching. Although this non-random, intact group sample also introduced possible biases, 

it made things easier and avoided asking another teacher to become familiar with a teaching 
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method he or she might not know or be reluctant to try. These two sections (35 students) 

experienced the new instructional design with merged theory and laboratory practice for the whole 

course. 

There were two different kinds of control groups. Three other teachers’ classes (Reg1, 

Reg2, Reg3) received interactive expository instruction with regular labs, closer to, yet not exactly 

traditional instruction, hence the “regular” qualification. The two remaining classes (Act4, Act5) 

were highly involved in a different form of interactive engagement or active learning. This 

classification was based on a qualitative questionnaire sent to all participating teachers (reproduced 

in appendix H) and further clarified by each with an estimated percentage of active learning based 

on the following question: “How would you approximately split the classes, in %, between time 

where students were active driving the discussion and inquiring about the physics compared to the 

time when you as the teacher were driving the discussion and leading or organizing the learning 

of the topic? For labs, how would you split the time between investigating, exploratory or 

instructionless/ill-defined labs versus confirmation labs with well-defined instructions to follow?” 

Each teacher was pretty much independent in their way to teach Mechanics, except for a 

common final exam where 78% of the questions were shared (the remaining 22% was to the choice 

of the teacher). Each section met three times a week: twice with another section for two hours of 

theory each time (hence a total of four hours, including an optional extra hour to support student 

success), and once alone for two hours of lab work (or anything else planned by the teacher, like 

tutorials). 
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To verify pre-existing knowledge of mechanics concepts and initial attitudes about physics, 

groups received standardized pre-tests – FCI, RRMCS, CLASS, to be answered on Scantron 

OpScan sheets (instructions given in appendix E) – on the third week of the Fall 2018 semester 

(except for Act4 and Act5, who administered the FCI pre-test at the start), after clearance from the 

Research Ethics Board (REB). It was presumed that didn’t affect much the FCI results of the 

modelling group (Mod) as the researcher had spent the first two weeks on basic lab skills and 

started kinematics after the pre-tests. The delay may have slightly affected the FCI pre-test scores 

of Reg1, Reg2 and Reg3, though. The impact on CLASS pre-scores is unknown. At the end of the 

course, all groups passed the same standardized tests again as post-tests, a few days before the 

final exam. The RRMCS was given only in the Mod group. The qualitative survey was distributed 

online to the treatment group on December 4th, two weeks before the end of classes, to obtain 

feedback on the new instructional design. Responses were received till December 18th, 2018. 

The new instructional design was inspired by modelling instruction and materials available 

from both the American Modeling Teachers Association (AMTA)1 and the Physics Education 

Research Group at Florida International University (FIU)2, the latter being the main source of both 

curriculum materials and activity plans suggesting how to use them. The design typically consisted 

of a pre-lab discussion, a lab investigation and a post-lab discussion, followed by worksheet 

 
1 Website: https://www.modellinginstruction.org/  

2 Website: http://univ-modellinginstruction.com/  
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exercises and sometimes a lab practicum.3 The course outline can be consulted in appendix I. There 

were no quizzes nor unit tests to assess learning through each of the modelling cycles, but there 

were three exams to test kinematics, dynamics, energy and momentum during the semester. 

Rotational motion was tested on the 78%-common final exam exclusively. The researcher didn’t 

have any formal training nor experience in modelling instruction, so the instructional design should 

be considered novice modelling instruction at best. 

After Scantron OpScan sheets were processed, raw data were exported to Microsoft Excel, 

then coded and anonymized by the research supervisor. The FCI, RRMCS and CLASS pre- and 

post-test data were then graded and given scores converted to percentages. If pre- and post-test 

scores were present, the shift or gain was calculated by subtracting the pre-test score from the post-

test score. Only matching results from consenting students were kept.  

Considering this group comparison had only one independent categorical variable (mode 

of instruction), with three levels (modelling instruction, interactive engagement, regular 

instruction), and three main continuous dependent variables (FCI-based conceptual learning 

outcomes, final exam-based procedural learning outcomes, CLASS-based attitudes about physics), 

a multivariate analysis of variance (MANOVA) was performed, looking for p-values below .05 

for statistical significance. The MANOVA was followed by various ANOVAs to locate significant 

differences with more precision. After comparing our results with our local control groups, they 

 
3 The specific materials (guiding slides, course pack with lab activities and worksheets) that were used in the modelling 

instruction group can be requested by contacting the researcher. 
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were also compared with the literature when published data were available. Extensive research has 

been done on modelling instruction and interactive engagement versus traditional instruction based 

on the FCI test. A lot of research has been done on the CLASS test as well. We checked how our 

results compared to that. Table 2 summarizes the essential elements of the study’s timeline. 

Table 2. Timeline of the study. 

Steps in the methodology Dates Goals 

Start of classes August 22nd, 2018  

Clearance from the Research 

Ethics Board (REB). 
September 10th, 2018 

Validating all ethical aspects of the 

research. 

FCI, RRMCS, CLASS pre-tests; 

consent forms 
September 10th to 14th, 2018 

Verifying pre-existing knowledge of 

mechanics concepts and initial 

attitudes about physics. 

FCI, RRMCS, CLASS post-tests December 3rd to 10th, 2018 

Verifying after-instruction 

knowledge of mechanics concepts 

and attitudes about physics. 

Qualitative survey to modelling 

students 
December 4th to 18th, 2018 

Getting insight into the perception of 

students about modelling instruction. 

End of classes December 10th, 2018  

78%-common final exam December 12th, 2018 Assessing problem-solving skills. 

Survey of participating teachers 

about their mode of instruction 
Winter 2019 

Classifying groups according to the 

main mode of instruction in order to 

operate proper statistical analyses 

and answer research questions. 

Analysis of data Winter 2019 to Winter 2020 Answering research questions. 
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3. INSTRUMENTS 

Many dozens of Research-Based Assessment Instruments (RBAIs) have been produced by 

the physics and astronomy education community based on research into the way students think 

(Madsen et al., 2017b). The FCI, RRMCS and CLASS (appendix F) were the three that were used 

in this research. The other two tools for data collection that were used were the common final exam 

and an online qualitative survey (appendix G). These instruments are described in more detail 

below. 

3.1 Answering the first research question 

The FCI, RRMCS and common final exam were used to answer the first research question 

about how modelling instruction differ from regular instruction or interactive engagement in terms 

of learning outcomes for CEGEP Mechanics students. Their nature, the type of data generated, and 

the strategy to analyze it are described here. 

3.1.1 Force Concept Inventory (FCI) 

The main pre/post-test used to answer the first research question was the last revision 

(1995) of the Force Concept Inventory (FCI) by Halloun, Hake, Mosca, and Hestenes. This 

standardized test assesses students' understanding of the basics of Newtonian physics (one-

dimensional kinematics, two-dimensional motion with constant acceleration [parabolic motion], 

Newton’s laws, impulsive forces, vector sums, cancellation of forces, and identification of forces) 

and provides lots of comparison opportunities from the literature. It is comprised of thirty multiple-

choice, conceptual questions asking students to choose between the right Newtonian answer and 
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incorrect common-sense alternatives based on those most often given by students in interviews 

(see sample questions in appendix F). Students are given thirty minutes to write this test; no marks 

are deducted for incorrect answers. Brewe (2002) reports a Kuder-Richardson Formula 20 (KR-20) 

reliability value of .90 for this instrument, consistent with what was found by Lasry, Rosenfield, 

Dedic, Dahan and Reshef (2011). As previously mentioned, Henderson (2002) found that few 

students don’t take the FCI seriously when it is ungraded and that post-test results are not affected 

in any statistically significant manner by the FCI being given as a pre-test. 

3.1.2 Rotational and Rolling Motion Conceptual Survey (RRMCS) 

A limitation of the FCI is its lack of assessment for rotational kinematics and dynamics, 

which is a significant part of the introductory Mechanics course in CEGEPs. To alleviate this 

weakness and be able to compare the conceptual learning outcomes on this topic as well, the 

Rotational and Rolling Motion Conceptual Survey (RRMCS) was set to be given as a pre- and 

post-test, along with the FCI. The RRMCS was developed by Rimoldini and Singh (2005) and 

focuses on rotational kinematics, rotational kinetic energy, moment of inertia, torque, rolling 

motion, and sliding versus tumbling. They report a reliability index α ranging from .68 to .82. Just 

like the FCI, this standardized test is comprised of thirty multiple-choice, conceptual questions 

asking students to choose between the right Newtonian answer and incorrect common-sense 

alternatives. Contrary to the FCI, though, students are also asked to explain their choices. They are 

given fifty minutes to write this test; no marks are deducted for incorrect answers. Because of time 

limitations due to other tests to be conducted in class, students from the treatment group were 

asked to skip the explanation part of the test and only thirty minutes were allowed to complete it. 
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Rimoldini and Singh (2005) performed a study with 3000 introductory physics students at the 

University of Pittsburgh, but the final version of the RRMCS was only given, totally or partially, 

to 652 of them. They report average test scores, but they make no comparison based on 

instructional designs, nor do they specify the type of instruction employed (although Dr. Singh 

told me in a private communication that it was traditional). The present research appears to be the 

first one to attempt at using the RRMCS in a comparative study and to perform the same statistical 

analyses as for the FCI. No other teacher besides the researcher accepted to give it, though, so its 

usefulness is strongly limited. Results will be reported for completion, but little inference will be 

made. 

3.1.3 Final exams 

The FCI and RRMCS were complemented by an analysis of final exams composed of 

problems to solve numerically, akin to those found in the textbook. It has been chosen not to 

include numerical questions testing problem-solving in the pre-test. Doing so would have helped 

to treat data uniformly, but the conceptual pre-test is believed to be sufficient to compare groups 

through descriptive statistics, without getting into the more complex and time-consuming job of 

duplicating a midterm assessment on a pre-test. Furthermore, that would have been a heavy 

demand for students to get through such an exam at the start of their first college physics course. 

3.1.4 Type of data generated and strategy for analyzing it 

With the FCI and the RRMCS, normalized learning gains (in percentages) were computed 

for everyone based on Hake’s (1998) formula, by taking the post-test score minus the pre-test score 
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and dividing it by what could be the maximum possible gain, i.e., the difference between 100% 

and the pre-test score. Mathematically, the calculation operates as follows: 

Normalized gain 𝑔 (%) =
actual gain 𝐺

maximum possible gain	𝐺!"#
=

post-test score− pre-test score
100%− pre-test score  

For example, if the pre-test score is 20% and the post-test score is 60%, then the actual gain is 

40%, the maximum potential gain is 80%, and the normalized learning gain is:  

Normalized gain 𝑔 (%) =
60% − 20%
100%− 20% =

40
80 = 50% 

Normalized learning gains of averages for both treatment and control groups were also 

computed and compared: 

Normalized	gain	of	averages 〈𝑔〉 (%) =
〈𝐺〉

〈𝐺!"#〉
=
〈post-test	score〉 − 〈pre-test	score〉

100%− 〈pre-test	score〉  

These normalized gains of averages are calculated with the gain of averages and therefore use the 

average post-test and pre-test scores for matched data, the difference of which (the actual average 

gain 〈𝐺〉) is then normalized by dividing it by the maximum possible average gain 〈𝐺!"#〉. This is 

the standard and common way to do this calculation, although many studies rather calculate the 

average of the individual normalized gains, which can also be argued for. This latter calculation 

was made to perform statistics while it was compared with the former to check for consistency. 

Mathematically, it is represented as so: 

Average	of	normalized	gains 𝑔"$% (%) = 〈
𝐺

𝐺!"#
〉 = 〈

post-test	score − pre-test	score
100% − pre-test	score

〉 
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Hake defines high, medium, and low values of 𝑔 as 𝑔 ≥ 0.7, 0.7 > 𝑔 ≥ 0.3,	and	𝑔 < 0.3, 

respectively (Hake, 1998). 

Although it is most common for physics faculty to compare normalized gains (Madsen et 

al., 2017a), it might be interesting to also analyze the average raw gain 〈𝐺〉 and the effect size. The 

former is less often used, but some studies prefer this measure. Its disadvantage is that comparisons 

become dependent on pre-test scores (Marx & Cummings, 2007), hence it is not always very useful 

to use it unless groups are found comparable based on that pre-test score. The latter is more 

common in social sciences research, but yet provides additional insight. In particular, the effect 

size accounts for the spread in students’ scores and allows comparing classes of different sizes 

more fairly (Madsen et al., 2017a), without normalizing gain scores on the same scale (Nissen et 

al., 2018). Furthermore, Nissen, Talbot, Thompson and Van Dusen (2018) state that in contrast to 

Hake (1998), Coletta and Phillips (2005) found that the normalized gain of averages was correlated 

with pre-test means. Their comparisons tended to show that normalized gains were biased in favour 

of high pre-test scores, leading to a recommendation to use Cohen’s d as an alternative measure. 

The study of effect sizes though Cohen’s d may, therefore, be more robust. Mathematically, 

Cohen’s effect size d is evaluated the following way: 

Effect	size	𝑑 =
〈post-test	score〉 − 〈pre-test	score〉

Pooled standard deviation  

Pooled std dev.	𝑠&''()* = S
TT𝑁&+) − 1V	𝑠&+), + T𝑁&'-. − 1V	𝑠&'-., V

𝑁&+) + 𝑁&'-. − 2
= ST𝑠&+)

, + 𝑠&'-., V
2  
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where s represents the standard deviation. Here, 𝑁&+) = 𝑁&'-. because we use matched data. To 

account for the dependence between pre- and post-tests, a correction can be made (Nissen et al., 

2018): 

Corrected	effect	size	𝑑*)& =
〈post-test	score〉 − 〈pre-test	score〉

Y(𝑠&+), + 𝑠&'-., − 2𝑟𝑠&+)𝑠&'-.)/2(1 − 𝑟)
 

where r represents the correlation between the pre-tests and post-tests and serves to deattenuate 

the effect size. Small, medium and large differences are associated with Cohen’s d ~0.2, ~0.5, and 

~0.8 respectively (Cohen, 1988). 

On the other hand, Marx and Cummings (2007) suggest analyzing the normalized change: 

Normalized	change	𝑐 =

⎩
⎪
⎨

⎪
⎧

post − pre
100% − pre

	if	post > pre

drop	if	post = pre = 100	or	0
0	if	post = pre

post − pre
pre

	if	post < pre

 

The rationale behind this proposition is that the normalized gain, which has a low-test score bias, 

produces a non-symmetric range of scores and doesn’t permit the calculation of the average of 

individual normalized gains when a student has a perfect pre-test score (rather forcing the use of 

the normalized gain of the groups’ averages). The normalized change addresses those limitations. 

When it comes time to compare average normalized changes, they argue that the average of 

changes 𝑐"$% is better than the change of averages 〈𝑐〉 because it captures the spread more 

accurately, making the report of the estimated uncertainties calculated from individual scores 
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consistent with the average normalized changes. Furthermore, it removes the ambiguity of whether 

the data were matched or not. 

In all cases, the data were carefully interpreted by keeping in mind that raw scores are 

typically ordinal (Wright & Linacre, 1989), meaning that our measures should be considered 

ordinal as well. 

With the final exam, raw scores and raw group averages were statistically compared to 

extract effects on procedural learning outcomes seen as problem-solving skills.  

3.2 Answering the second research question 

The CLASS was used to answer the second research question about how modelling 

instruction differ from regular instruction or interactive engagement in terms of attitudes (or 

beliefs) about physics for CEGEP Mechanics students. Its nature, the type of data generated, and 

the strategy to analyze it are described here.  

3.2.1 Colorado Learning Attitudes about Science Survey (CLASS) 

To answer the second research question, the pre/post-test scheme used the popular 

Colorado Learning Attitudes about Science Survey (CLASS) standardized test, which was 

developed by Adams, Perkins, Podolefsky, Dubson, Finkelstein, and Wieman (2006). The latest 

(third) version for physics, released in 2004, was used. This instrument measures students’ self-

reported beliefs about physics and its learning. The analysis then permits to evaluate how closely 

these beliefs align with those of experts. The CLASS test is comprised of forty-two questions (see 
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appendix F for a sample) that are answered on a five-point ordinal Likert scale: strongly disagree 

(1), disagree (2), neutral (3), agree (4), strongly agree (5). Twenty-seven questions fall into one of 

the following eight empirically determined categories: real-world connections; personal interest; 

sense-making or effort; conceptual connections; applied conceptual understanding; problem-

solving general; problem-solving confidence; and problem-solving sophistication. Nine more are 

non-categorized, but part of the overall scoring. Finally, another six are excluded from scoring for 

lack of “expert” response or usefulness in their current form. In particular, the thirty-first statement 

serves to identify the majority of students who randomly choose answers, and to discard their 

surveys from the analysis. Students are allowed a total of ten minutes to answer the test. The 

developers assessed the test-retest reliability (through correlations of answers) to .98-.99 for beliefs 

in agreement or disagreement with those of experts, and .88 for neutral responses (Adams et al., 

2006). 

3.2.2 Type of data generated and strategy for analyzing it 

With the CLASS, percentages of responses in agreement (percent favourable or percent 

expert-like response) and in disagreement (percent unfavourable or percent novice-like response) 

with the experts’ view were calculated and averaged. Then, the individual shifts and the average 

group shifts in attitudes from pre- to post-test for matched data were computed. Mathematically, 

those calculations are made in the following way: 

Shift S (%) = pre-test	%	favourable − post-test	%	favourable 

Average	shift 〈𝑆〉	(%) = 〈pre-test	%	favourable〉 − 〈post-test	%	favourable〉 
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For example, if the percent favourable scores of a student on the pre-test and post-test are 40% and 

60% respectively, then his or her actual shift in attitudes is 20%.  

The analysis was again completed by a calculation of Cohen’s effect size d: 

Effect	size	𝑑 =
〈post-test	score〉 − 〈pre-test	score〉

Pooled standard deviation  

Pooled std dev.	𝑠&''()* = S
TT𝑁&+) − 1V	𝑠&+), + T𝑁&'-. − 1V	𝑠&'-., V

𝑁&+) + 𝑁&'-. − 2
= ST𝑠&+)

, + 𝑠&'-., V
2  

where s represents the standard deviation. Here, 𝑁&+) = 𝑁&'-. because we use matched data. To 

account for the dependence between pre- and post-tests, a correction can be made (Nissen et al., 

2018): 

Corrected	effect	size	𝑑*)& =
〈post-test	score〉 − 〈pre-test	score〉

Y(𝑠&+), + 𝑠&'-., − 2𝑟𝑠&+)𝑠&'-.)/2(1 − 𝑟)
 

where r represents the correlation between the pre-tests and post-tests and serves to deattenuate 

the effect size. Small, medium and large differences are associated with Cohen’s d ~0.2, ~0.5, and 

~0.8 respectively (Cohen, 1988). 

When scoring the CLASS surveys, neutrals are considered neither in agreement nor in 

disagreement with experts because there are so many reasons that could influence a student’s 

choice for this answer. Agreement and strong agreement are collapsed together, just as 

disagreement and strong disagreement are. The reason is that students’ interpretations of nuances 
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between pairs of terms are not consistent, while at the same time it is important to offer a 5-point 

rather than a 3-point Likert scale to avoid increasing the number of neutrals (Adams et al., 2006). 

Unanswered statements are discarded from the calculations, as long as there is not a lot of them, 

which could justify discarding the survey. Once again, the data were interpreted carefully by 

keeping in mind that all measures are ordinal. 

3.3 Answering the third research question 

An online qualitative survey was used to answer the third research question about how 

CEGEP Mechanics students are perceiving (in terms of what they like or don’t like) the 

introduction of modelling instruction. Its nature, the type of data generated, and the strategy to 

analyze it are described here. 

3.3.1 Qualitative survey 

The qualitative survey to answer the third research question was comprised of a few open-

ended questions. Likert scales could have been used to make it more quantitative, but this could 

also have directed comments rather than foster spontaneous reactions from students. The 

questionnaire was asking about their views on the new instructional design. 

3.3.2 Type of data generated and strategy for analyzing it 

The qualitative appreciation of the new instructional design was evaluated through a 

qualitative analysis of comments received. Although not many responses were received, major 
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themes were extracted, and some ideas for successful implementation on a larger scale were 

gained. 

4. ETHICAL CONSIDERATIONS 

Some potential ethical issues existed relative to participants, sponsors of the research, and 

the community of educational researchers, but each of those was addressed. 

It is believed that an ethic of respect and freedom is essential to the conduct of any research. 

The first aspect of that is the necessity of voluntary informed consent. Participation needs to be 

free and consensual. No student was part of the study without proper consent obtained by a neutral 

person in the absence of the teacher. The researcher took that role in classes belonging to the 

regular instruction and interactive engagement groups, whereas a pedagogical counsellor from the 

college did it for the modelling instruction group that the researcher was teaching. The consent 

wasn’t revealed to the teacher. Furthermore, no compensation or reward was offered for 

participation in the research, thus avoiding a potential influence on participants’ decisions. 

Consent forms from students were distributed and collected in the third week of the 

semester due to delays in getting approval from the Research Ethics Board. Technically, some 

students might have been 17 years old, but it is customary for the administration to consider college 

students independent from their parents when they enter CEGEP. This research abided by the same 

standards and the consent from parents was not required. 

Proper consent also means that participants understand why their participation is important, 

how the information will be used and whom it will be reported to. This is closely related to the 
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second aspect of an ethic of respect, namely openness and disclosure. Clear information about the 

process of the research was thus provided by the researcher or a neutral person before consent. 

Participants were informed of the research and its goals transparently. 

The third aspect is the right to withdraw for any or no reason. Participants were informed 

of this right and of the process to follow should this happen. 

Although whole groups received the treatment, students who didn’t (or withdrew) consent 

didn’t have their data compiled and analyzed for the study. Students who didn’t want to participate 

in the treatment (modelling instruction) also had a period at the start of the semester to change 

sections, according to the official calendar set by the administration. The researcher didn’t know 

who gave consent or not before the end of the semester after final grades had been submitted and 

the data anonymized. 

The fourth aspect is privacy and confidentiality. To address that, the data were anonymous 

by having the supervisor coding it before any analysis occurred. The storage of data and results 

needs to be carefully thought through. Data were stored on the researcher’s personal computer, 

which is password-protected and not accessible to unauthorized people. Raw data will be destroyed 

no later than seven years after the end of the research. That should be sufficient protection of the 

kind of data that was collected by the researcher. 

Finally, the fifth aspect is the disclosure of results. Interested participants were, therefore, 

offered a summary of the final report without any reference to the standardized tests that were 

used. 
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This research was not directly funded by anyone, but it was realized on the premises of the 

researcher’s college. An application was submitted to their Research Ethics Board (RBE) for 

permission to carry out the project. Copies of the research certification received, of the research 

recruiting script that has guided the presentation of the project to students, and of the consent form 

participants had to fill out are included in appendices B to D. 

This work was carried out ethically, according to best practices. As such, the community 

of educational researchers was well represented. To fulfill other responsibilities toward this 

community, the results of this research will be communicated in conferences and journals after 

publication, as a way to contribute to the construction of a body of knowledge about instructional 

methods that improve the learning of students in physics and possibly in other disciplines. 

It is believed that this research will benefit physics students by allowing better instruction 

to occur and that risks associated with it were naught. Indeed, the same instruction would have 

occurred even if no research had been conducted, except that with this research that novel 

instructional design was formally evaluated. On the contrary, participants may directly benefit if 

they take a future physics course where the new instructional design has been adopted (or not) 

because of results found. More immediately, the new instructional design may have shown them 

that there are different ways of approaching physics. Furthermore, some students may have gained 

a more realistic understanding of the scientific process. 



FIFTH CHAPTER. COLLECTED DATA AND RESULTS 

Having collected raw data from consenting participants, descriptive statistics were 

performed. We could then proceed to the analysis and interpretation of the data as we sought 

answers to the research questions. The main results of those statistics for each teaching method 

category – modelling instruction (Mod), interactive engagement (Act) and regular instruction 

(Reg) – are presented below, in five parts, the last three separately presenting the collected data 

and results related to a research question in particular. The first section presents data about the 

sample and seeks ground for statistics calculated afterwards. The second section provides a general 

assessment of potential group differences. More detailed analyses supporting results presented 

herein can be found in appendix A. 

1. DATA ABOUT THE SAMPLE 

As described in the methodology chapter, the research used a treatment group (Mod: 

modelling instruction) of 20 consenting students and two control groups (Act: interactive 

engagement; Reg: regular instruction) of respectively 61 and 83 consenting students. Six classes 

corresponding to twelve sections (two sections per class, one section per lab) of Mechanics taught 

by six physics teachers at the college participated in the research. Table 3 summarizes the 

distribution of sections in the three groups and details the number of consenting students along 

with participation rates for the various tests that were given. This information was calculated by 

comparing the number of responses to the total number of students in each group.   
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Table 3. Research design and participation rates. 

Teacher Researcher Teacher 4 Teacher 5 Teacher 1 Teacher 2 Teacher 3 

Code a Mod Act4 Act5 Reg1 Reg2 Reg3 
Act Reg 

     

Treatment 
Novice 

Modelling 
Instruction 

Interactive Engagement 
(highly interactive) 

Regular Instruction 
(somewhat interactive) 

Est. % of active 
learning b 75% 70% 70% 40% 20% 25% 

Class sections 2 2 2 2 2 2 
4 6 

Total number of 
students N 35 36 35 35 36 32 

71 103 
Number of 
consenting 
students Ncons 

20 (57%) 
31 (86%) 30 (86%) 25 (71%) 32 (88%) 26 (81%) 

61 (86%) 83 (81%) 
       
FCI pre/post-tests Yes Yes Yes Yes Yes Yes 

𝑵𝑭𝑪𝑰
𝒎𝒂𝒕𝒄𝒉𝒆𝒅

 20 (57%) 27 (75%) 24 (69%) 6 (17%) 31 (86%) 24 (75%) 
51 (72%) 61 (59%) 

       
RRMCS pre/post-
tests Yes No No No No No 

𝑵𝑹𝑹𝑴𝑪𝑺
𝒎𝒂𝒕𝒄𝒉𝒆𝒅 20 (57%) * * * * * 

       
78%-common 
final exam Yes Yes Yes Yes Yes Yes 

Nfinal 20 (57%) 30 (83%) 26 (74%) 21 (60%) 32 (89%) 26 (81%) 
56 (79%) 79 (77%) 

       
CLASS pre/post-
tests Yes Yes Yes Yes Yes Yes 

𝑵𝑪𝑳𝑨𝑺𝑺
𝒎𝒂𝒕𝒄𝒉𝒆𝒅 19 (54%) 21 (58%) 11 (31%) 8 (23%) 29 (81%) 21 (66%) 

32 (45%) 58 (56%) 
       
Qualitative survey Yes No No No No No 

Nsurvey 8 (23%) * * * * * 

a Mod: MODelling; Act: InterACTive engagement; Reg: REGular instruction 

b Based on a rough estimate by the teacher. 
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Only data from consenting students were kept. That led to a proportion of available data 

varying from 57% in the modelling instruction group to 86% in the interactive engagement group. 

The data were further refined by filtering out tests that were less than 80% complete (less than 24 

answered questions out of 30 for the FCI and RRMCS, or 36 out of 45 for the CLASS) or that 

didn’t answer the filter question correctly on the CLASS test (there to ensure students were paying 

attention to the test). We further rejected non-matched sets of scores on the FCI, RRMCS, and 

CLASS tests to perform statistical analyses of gains, changes, and shifts. In the end, the net 

response rates varied between 57% and 72% on the FCI, was 57% on the RRMCS, and varied 

between 45% and 56% on the CLASS. For the final exam, keeping grades of consenting students 

led to a net response rate varying between 57% and 79%. For the end-of-semester qualitative 

survey sent to modelling students, the response rate was only 23%. It is on that final and cleaned 

dataset that we performed further calculations of statistics, presented in the following sections, 

using the Minitab v.19 software. 

It is worth noting that two classes (55 consenting students) received their post-tests under 

special conditions. Teacher Reg1 (25 consenting students) lacked time at the end of the semester 

and administered them during the last optional hour of class, which probably explains the very low 

percentage of matched data (17% for the FCI; 23% for the CLASS) despite a relatively high 

percentage of consenting students (71%). Relative to the number of consenting students, this 

corresponds to a drop rate of 76% and 68% for the FCI and CLASS post-tests, respectively. On 

the other hand, teacher Act5 (30 consenting students) administered the CLASS post-test online, 

for students to do at home, again because of a lack of time. That may explain the low percentage 
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of matched CLASS data (31%) compared to the FCI (69%). Relative to the number of consenting 

students, this corresponds to a drop rate of 63% for the CLASS post-test. 

2. GENERAL ASSESSMENT OF POTENTIAL GROUP DIFFERENCES 

To detect if there was any statistically significant difference between groups, we 

simultaneously tested the equality of means from favourable and unfavourable attitude shifts S, 

normalized gains g and final exam grades. To achieve this, we performed a general multivariate 

analysis of variance (MANOVA) with 𝛼 = .05. The main results are reproduced in table 4. 

Table 4. MANOVA tests for groups (modes of instruction). 

 Test 
Statistic 

 DF  
Criterion F Num Denom P 
Wilks' 0.83035 2.411 8 198 0.0167 
Lawley-Hotelling 0.19801 2.426 8 196 0.0161 
Pillai's 0.17487 2.395 8 200 0.0173 
Roy's 0.15824     

s = 2    m = 0.5    n = 48.5 

Wilks’ test, just like Lawley-Hotelling’s and Pillai’s, produce a p-value below 𝛼 = .05, 

meaning that there is a statistically significant difference between groups. Although we can reject 

the null hypothesis, that doesn’t tell us where that difference is located. A quick overview of 

ANOVA p-values evaluated through the MANOVA pointed in the direction of the FCI test (the 

only one with 𝑝 < .05, evaluated at 0.00169), but because there were differing missing values for 

different dependant variables, we decided to perform separate analyses of variance to investigate 

relations between groups (novice modelling instruction, active learning, regular instruction) and 

dependant variables more precisely. Nevertheless, we were able to predict that differences would 
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most probably be detected only on the FCI assessment of learning outcomes, which required an 

ANOVA to localize between which groups that difference can be observed. 

3. FIRST RESEARCH QUESTION: LEARNING OUTCOMES 

Our first research question and corresponding hypotheses were the following: 

Q1: How does modelling instruction differ from regular instruction or interactive engagement in 

terms of learning outcomes for CEGEP Mechanics students? 

H1: CEGEP Mechanics students receiving modelling instruction, compared to regular instruction 

or interactive engagement, will perform differently on pre/post standardized assessments (FCI, 

RRMCS) of deep conceptual understanding and on more traditional exams testing problem-solving 

skills. 

H0: CEGEP Mechanics students receiving modelling instruction, compared to regular instruction 

or interactive engagement, will perform equivalently on pre/post standardized assessments (FCI, 

RRMCS) of deep conceptual understanding and on more traditional exams testing problem-solving 

skills. 

To answer this question about learning outcomes, we collected responses to the FCI, 

RRMCS and 78%-common final exam. We then calculated various statistics like pre- and post-

test scores, (normalized) gains and changes, and effect sizes, which all appear in appendix A. 

Hereafter, FCI raw score will first be examined, then FCI conceptual learning gains, RRMCS 

conceptual learning gains and final-exam grades will be discussed. 
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3.1 Conceptual understanding through FCI raw scores 

When looking at FCI scores (table 5), it is noteworthy to observe that the average FCI score 

for the pre-test was below 60% in all groups and that for the post-test it was barely above 60% 

(modelling instruction and interactive engagement) or slightly below (regular instruction). Based 

on Hestenes’s and Halloun’s considerations (1995), this would mean that our students arriving 

from high schools – who for most completed Secondary V Physics (which covers translational 

kinematics, Newton’s laws and forces, energy, and geometrical optics) a year before – are very 

deficient conceptually and ill-prepared for our calculus-based mechanics course which resembles 

the US-equivalent university physics, although many teachers limit the use of calculus that is often 

learned in parallel, thus giving a course that resembles more the US-equivalent college physics. 

Considering the initial state of students, perhaps it’s not very surprising that FCI post-test scores 

are not very high, although it’s somewhat saddening to observe scores that are close to 60%, 

meaning that students barely began to use Newtonian reasoning, if at all, toward the end of the 

course, even with interactive engagement methods. 

It is shown in appendix A that differences in FCI pre-test scores were not significant, but 

we should perform the same kind of analysis, based on a one-way analysis of variance (ANOVA) 

with 𝛼 = .05, on the post-test scores. Results are in tables 5 and 6, and figures 5 and 6.  
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Table 5. Group means (%) on FCI post-test scores. 

Group N Mean StDev 95% CI 
Act 51 64.25 19.19 (59.30, 69.20) 
Mod 20 66.17 21.20 (58.27, 74.08) 
Reg 61 53.55 15.40 (49.03, 58.08) 

Pooled StDev = 17.8673 

 

Table 6. Analysis of variance on FCI post-test scores. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Group 2 4197 9.25% 4197 2098.3 6.57 0.00191 
Error 129 41182 90.75% 41182 319.2 

  

Total 131 45379 100.00% 
    

        

 

 
Figure 5. Boxplot of FCI post-test scores. 
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Figure 6. Tukey and Fisher pairwise comparisons, Dunnett multiple comparisons with the 

control (Reg), and Hsu multiple comparisons with the best (MCB) for FCI post-test 

scores. 

We find a p-value of .002, lower than 𝛼 = .05, leading us to conclude that there is a 

statistically significant difference between groups. To locate this difference, we performed various 

tests. Looking at Tukey and Fisher pairwise comparisons, at Dunnet multiple comparisons with 

the Reg control, and at Hsu multiple comparisons with the best (Mod), all suggest a statistically 

(and practically) significant difference between the regular instruction group and both interactive 

engagement and modelling instruction groups. No significant difference is suggested between 

interactive engagement and modelling instruction groups, however. 
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FCI post-test scores are not the right variable to infer learning gains as they may have some 

dependence on FCI pre-test scores, which are not necessarily the same for all groups. Yet, the 

present results tell us that although all post-test scores were close to 60%, the post-test scores of 

the regular instruction group were qualitatively different. We indeed infer that students in the Mod 

and Act groups seemed to barely begin to use Newtonian reasoning at the end of the semester, 

whereas in the Reg group they seemed to be close to, yet not at this level. The ANOVA allowed 

us to see this difference as meaningful, and because there was no statistically significant difference 

in pre-test scores, this appears to be attributable to modes of instruction. That will be further 

investigated as FCI gains are analyzed. 

3.2 Conceptual learning gains on the FCI test 

In this section, descriptive statistics will be discussed before analyzing data through a one-

way ANOVA and Cohen’s d (effect size). Then data will be compared with the scientific literature. 

3.2.1 Descriptive statistics 

Let’s first take a look back at some of the descriptive statistics of the FCI test to assess the 

consistency between various related measures (table 7). 
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Table 7. Descriptive statistics of FCI gains for different modes of instruction. 

Variable Group N N* Mean SE Mean StDev 
FCI Average Gain <G> (%) 
   
   

Act 51 10 24.90 2.20 15.71 
Mod 20 0 21.84 4.31 19.27 
Reg 61 22 19.07 1.74 13.55 

   
      

FCI Normalized Gain of Averages <g> (%) 
   
   

Act 51 10 41.06 * * 
Mod 20 0 39.22 * * 
Reg 61 22 29.11 * * 

   
      

FCI Average of Normalized Gains gavg (%) 
   
   

Act 51 10 43.39 3.39 24.21 
Mod 20 0 40.56 6.33 28.31 
Reg 61 22 29.13 2.38 18.59 

   
      

FCI Normalized Change of  
Averages <c> (%) 
   

Act 51 10 41.06 * * 
Mod 20 0 39.22 * * 
Reg 61 22 29.11 * * 

   
      

FCI Average of Normalized  
Changes cavg (%) 
   

Act 51 10 43.34 3.41 24.32 
Mod 20 0 40.84 6.20 27.73 
Reg 61 22 29.05 2.40 18.75 

       
 

If we look at the average raw gain <G>, we observe that the highest average is achieved 

with interactive engagement, followed by modelling instruction, and then by regular instruction. 

The same order is obtained looking at all other measures, so everything seems consistent. It is 

however preferable not to work with the average raw gain for it is sensible to differences between 

groups as expressed through FCI pre-test scores, although a previous analysis (in appendix A) 

showed that we couldn’t detect any statistically significant difference between the groups. The 

literature rather relies on the normalized gain of averages <g> or the average of normalized gains 

gavg. It is the latter that we can assess through an ANOVA, so we privileged this measure although 

we calculated both. Some authors have discussed the limitations of normalized gains and proposed 

to rather use the normalized changes. We calculated them as well, but as can be seen, the 
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differences between the two in our dataset is so minimal that we can safely assume them to be 

negligible. Therefore, it is sufficient to report only the statistical analysis of the average of 

normalized gains to evaluate if there is a statistically significant difference between groups.  

3.2.2 Analysis of variance 

A one-way ANOVA on normalized gains g was thus performed with 𝛼 = .05. Results are 

presented in tables 8 and 9, and figures 7 and 8. 

Table 8. Group means (%) on FCI normalized gains. 

Group N Mean StDev 95% CI 
Act 51 43.39 24.21 (36.59, 50.20) 
Mod 20 40.56 28.31 (27.32, 53.81) 
Reg 61 29.13 18.59 (24.37, 33.89) 

 

Table 9. Analysis of variance on FCI normalized gains (Welch’s test). 

Source DF Num DF Den F-Value P-Value 
Group 2 47.4596 6.35 0.00359 

 

 
Figure 7. Boxplot of FCI normalized gains. 
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Figure 8. Games-Howell pairwise comparisons for FCI normalized gains. 

We find a p-value of .004, lower than 𝛼 = .05, leading us to conclude that there is a 

statistically significant difference between groups. To locate this difference, we performed Games-

Howell pairwise comparisons. This test suggests a statistically (and practically) significant 

difference between regular instruction and interactive engagement, but it didn’t detect any 

difference between novice modelling instruction and either interactive engagement or regular 

instruction. The null hypothesis cannot be rejected for novice modelling instruction. However, we 

do see that the average of normalized gains is higher for interactive engagement (43.4%) compared 

to regular instruction (29.1%), and we are allowed to wonder, considering that modelling 

instruction is a special type of interactive engagement, if an expert implementation wouldn’t lead 

to the same kind of results. The observation that the difference of means is smaller between novice 

modelling instruction and interactive engagement (2.9%) than it is between novice modelling 

instruction and regular instruction (11.4%) also supports such a hypothesis, which would be worth 

investigating further. 
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3.2.3 Effect size 

If we leave the ANOVA for a moment and look into the effect size dG based on the average 

gain and the pooled standard deviation of FCI pre- and post-test scores, and also into the corrected 

effect size dG, dep taking into account a possible dependence between the two scores modelled by 

Pearson’s coefficient of correlation r, we find results of table 10. 

Table 10. Effect size for the FCI gain, for different modes of instruction. 

Group N N* FCI Gain Effect Size dG FCI Gain Corrected Effect Size dG, dep 
Act 51 10 1.27 1.26 
Mod 20 0 1.08 1.08 
Reg 61 22 1.29 1.28 

 

As can be seen in table 10, both Cohen’s effect size dG and the corrected Cohen’s effect 

size dG, dep are nearly identical within two decimals. If it is remembered that a negative effect size 

corresponds to a decrease whereas a positive one corresponds to an increase, and if we consider 

that ~0.2 is small, ~0.5 is medium, and ~0.8 is large, we find that all teaching methods have a large 

and positive impact. However, we also observe that the effect sizes of interactive engagement 

(1.26) and regular instruction (1.28) are nearly the same whereas the effect size of novice 

modelling instruction (1.08) is lower. It would have been expected otherwise based on the previous 

ANOVA performed on normalized gains where modelling instruction (40.6%) was situated 

between interactive engagement (43.4%) and regular instruction (29.1%). Thus, it seems like 

novice modelling instruction, although producing a large positive effect on FCI gains, falls behind 

when taking into account the pooled standard deviation. Yet, one should be careful about this, 
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considering limitations to this study. Further research should be performed before arriving at more 

solid conclusions. 

3.2.4 Comparison with the scientific literature 

Beside comparing FCI learning gains of a novice modelling instruction implementation 

with regular instruction and interactive engagement instruction at the researcher’s college, it is 

interesting to do so with results from the literature to put our results into perspective and extract 

additional insight. Looking for North American meta-analyses, or smaller studies if they are of 

particular interest, we found a few whose results are summarized in table 11. The main 

inconvenience of these studies is that the standard error is seldom reported. Yet, the data are still 

interesting and useful to risk some inferences. 

Comparable statistics from our research are presented in table 12. Looking at conceptual 

learning gains as assessed by FCI normalized gains of averages <g> or averages of normalized 

gains gavg, we notice that the regular instruction group performed better at 29.1% than the typical 

22% reported for traditional instruction in the literature (t-value = 3.00; p-value = .004). We may 

think that the limited use of active learning strategies, although in moderation, have contributed to 

this better performance. The interactive engagement group seems to have performed, at 41%-43%, 

as reported in the literature (39% to 48%). When we look at modelling instruction, the literature 

reports normalized average gains of about 35-36% for a novice implementation and 56-58% for 

an expert implementation, keeping in mind that novice modellers are defined as teachers who have 

completed the first 4-week Modelling Workshop at Arizona State University (ASU) whereas 

expert modellers are defined as teachers who have completed the full two-summer program of 



72  Fifth Chapter. Collected Data and Results 
 

Modelling Workshops. The researcher’s group of modelling instruction performed at 39%-41%, 

which is also consistent (t-value = 0.80; p-value = .434). The performance could even be 

considered a positive surprise as the researcher didn’t have any formal training in modelling 

instruction. Prudence is nevertheless required, as many students (43% of the class) didn’t consent 

to participate in the research and therefore were not taken into account in the data presented. 

Table 11. Statistics on FCI gains, based on scientific literature. 

Test/Reference Ntot Measure (%) Modelling 
Instruction 

Interactive 
Engagement Traditional 

MD, FCI, MB  
(Hake, 1998) 6,542 <g>  

(StDev) * 48 (14) 23 (4) 

FCI 
(Hestenes, 2000) 20,000 <g> 58 (expert) a 

36 (novice) b * 22 

FCI 
(Hestenes, 2006) 7,500 <g> 56 (expert) a 

35 (novice) b * 22 

FCI 
(Brewe et al., 2010) 1,016 

<g> 44.4 * 22.1 

<G> (SE) 30.4 (1.1) * 14.8 (0.5) 

FCI 
(Von Korff et al., 2016) 31,000 

<g> & gavg 

(SE) c * 39 (2) 22 (2) 

      

MD: Halloun – Hestenes Mechanics Diagnostic / FCI: Force Concept Inventory / MB: Mechanics Baseline 

a Expert modellers are defined as teachers who have completed the full two-summer program of Modelling 

Workshops at Arizona State University (ASU). 

b Novice modellers are defined as teachers who have completed the first 4-week Modelling Workshop at Arizona 

State University (ASU). 

c Estimated graphically from figure 1 in their publication. 
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Table 12. Comparable statistics on FCI gains for the F2018 research. 

Variable Group N N* Mean SE Mean StDev a 
FCI Normalized Gain of Averages <g> (%) 
   
   

Act 51 10 41.06 * * 
Mod 20 0 39.22 * * 
Reg 61 22 29.11 * * 

   
      

FCI Average of Normalized Gains gavg (%) 
   
   

Act 51 10 43.39 3.39 24.21 
Mod 20 0 40.56 6.33 28.31 
Reg 61 22 29.13 2.38 18.59 

a The standard deviation of the average of normalized gains gavg was used for t-statistics. 

 
3.3 Conceptual learning gains on the RRMCS test 

In this section, descriptive statistics will be discussed before analyzing data through 

Cohen’s d (effect size). The data will also be compared with the scientific literature. 

3.3.1 Descriptive statistics 

Only students from the modelling group were assessed based on the RRMCS standard test 

to evaluate learning outcomes in rotation. We cannot compare groups, but we can provide 

descriptive statistics that may become useful for future studies. If we look into table 13, we can 

first assess the differences between various related measures. 

Table 13. Descriptive statistics of RRMCS gains for novice modelling instruction. 

Variable Group N N* Mean SE Mean StDev 
RRMCS Pre-Score (%) Mod 20 0 35.66 3.26 14.60 
RRMCS Post-Score (%) Mod 20 0 48.49 4.59 20.53 
RRMCS Average Gain <G> (%) Mod 20 0 12.83 2.70 12.05 
RRMCS Normalized Gain of Averages <g> (%) Mod 20 0 19.95 * * 
RRMCS Average of Normalized Gains gavg (%) Mod 20 0 23.41 6.21 27.77 
RRMCS Normalized Change of Averages <c> (%) Mod 20 0 19.95 * * 
RRMCS Average of Normalized Changes cavg (%) Mod 20 0 22.46 6.51 29.11 
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The first thing we observe is the average pre-test score of 35.7% and the average post-test 

score of 48.5%. The RRMCS average pre-test score is lower than the one found for the FCI 

(44.3%). This is understandable as rotation is a topic not covered in high school, contrary to 

kinematics and forces. Not surprisingly, the RRMCS average post-test score is also lower 

compared to FCI’s (66.2%). We also notice that this post-test score is considerably lower than 

60%, leading us to believe that more time and more well-planned activities will be required if one 

is hoping for a basic conceptual understanding of rotation. 

The literature generally relies on the normalized gain of averages <g> or the average of 

normalized gains gavg to compare learning outcomes of different instructional designs. Both have 

been calculated. Some authors have discussed the limitations of normalized gains and proposed to 

rather use the normalized changes. We calculated them as well, but as can be seen, the differences 

between the two in our dataset is rather minimal. Nevertheless, we report the descriptive statistical 

analysis of both the average of normalized gains gavg and change cavg in figure 9. It appears that 

the novice modelling instruction has produced, on average, an increase of 20% to 23% in 

conceptual understanding of rotation, about half what was found for kinematics and forces with 

the FCI (39% to 41%). 
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Figure 9. Summary descriptive statistics of RRMCS normalized gains. 

3.3.2 Effect size 

If we look into the effect size dG based on the average gain and the pooled standard 

deviation of RRMCS pre- and post-test scores, and also into the corrected effect size dG, dep taking 

into account a possible dependence between the two scores modelled by Pearson’s coefficient of 

correlation r, we find results of table 14. As can be seen in the table, both Cohen’s effect size dG 

and the corrected Cohen’s effect size dG, dep are relatively similar. 

Table 14. Effect size for the RRMCS gain, for novice modelling instruction. 

Group N N* RRMCS Gain Effect Size dG RRMCS Gain Corrected Effect Size dG, dep 
Mod 20 0 0.72 0.65 

 

If it is remembered that a negative effect size corresponds to a decrease whereas a positive 

one corresponds to an increase, and if we consider that ~0.2 is small, ~0.5 is medium, and ~0.8 is 

large, we observe that novice modelling instruction appears to have a moderately high positive 

impact. 
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3.3.3 Comparison with the scientific literature 

Beside comparing conceptual learning outcomes of a novice modelling instruction 

implementation with regular instruction and interactive engagement instruction at the researcher’s 

college, it is interesting to do so with results from the literature. Looking for North American meta-

analyses, or smaller studies if they are of particular interest, we found one whose results are 

summarized in table 15. The main inconvenience of that study is that the standard error is not 

reported. Yet, the data are still interesting and useful to risk some inferences. 

Comparable statistics from our research are presented in table 16. When we look at the 

conceptual mastery of rotation as assessed by the RRMCS scores at the end of a first-semester 

mechanics course, we observe that the results from the modelling group (48.5%) compare to what 

Rimoldini and Singh (2005) report for introductory and upper-level traditional courses (44% to 

61%). It would be better to have average normalized gains calculated based on an RRMCS pre-

test average score, but it is justifiable to skip the pre-test and to focus on the post-test score when 

students don’t have previous knowledge as it is the case of rotation when students take college or 

university mechanics for the first time. The data from Rimoldini and Singh (2005) mixed 

introductory and upper-level physics, so it’s not perfect. However, only 17 students out of 559 

(after removing 93 freshman honour students out of the total of 652 participating in their study) 

came from those upper-level courses. We can thus hypothesize a relatively low effect of the mix 

on the results for introductory students. It would seem, therefore, that novice modelling instruction 

hasn’t stood out, although this is based on a single study and both studies have limitations that 

have to be kept in mind. 
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Table 15. Statistics on RRMCS scores, based on scientific literature. 

Test/Reference Ntot Measure (%) Modelling 
Instruction 

Interactive 
Engagement Traditional 

RRMCS 
(Rimoldini & 
Singh, 2005) 

652 RRMCS scores * * 
44-61 (introductory 

and upper level) 
75 (freshman honour) a 

RRMCS: Rotational and Rolling Motion Conceptual Survey 

a The mode of instruction was not specified, but Dr. Singh is pretty sure it was traditional (private conversation, 2020). 

 
Table 16. Comparable statistics on RRMCS scores for the F2018 research. 

Variable Group N N* Mean SE Mean StDev 
RRMCS Post-Score (%) 
   
   

Act 0 61 * * * 
Mod 20 0 48.49 4.59 20.53 
Reg 0 83 * * * 

       

 
3.4 Problem-solving skills on the 78%-common final exam 

Let’s now turn to the 78%-common final exam grades as a way to assess problem-solving 

skills rather than conceptual understanding as it was the case with the FCI and RRMCS. A one-

way analysis of variance (ANOVA) on final exam grades was performed with 𝛼 = .05. Results 

are presented in tables 17 and 18, and figures 10 and 11. The p-values are above 𝛼 = .05 and none 

of the many tests performed the final exam grades leads us to discard the null hypothesis. 

Therefore, no statistically significant difference appears between groups. 
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Table 17. Group means (%) on final exam grades. 

Group N Mean StDev 95% CI 
Act 56 67.61 20.37 (62.58, 72.63) 
Mod 20 62.53 15.67 (54.12, 70.94) 
Reg 79 68.26 18.79 (64.03, 72.49) 

Pooled StDev = 19.0281 

 

Table 18. Analysis of variance on final exam grades. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Group 2 533.4 0.96% 533.4 266.7 0.74 0.480 
Error 152 55034.2 99.04% 55034.2 362.1       
Total 154 55567.6 100.00%             

 

 
Figure 10. Boxplot of final exam grades. 
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Figure 11. Tukey and Fisher pairwise comparisons, Dunnett multiple comparisons with the 

control (Reg), and Hsu multiple comparisons with the best (MCB) for final exam 

grades. 

3.5 Discussion 

No statistically significant difference was found between novice modelling instruction and 

either interactive engagement or regular instruction for learning outcomes, be they measured 

through the FCI for normalized conceptual learning gains or the 78%-common final exam for 

problem-solving skills. Thus, the null hypothesis couldn’t be rejected for modelling instruction. 

However, a statistically significant difference was found between interactive engagement and 
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regular instruction for FCI normalized conceptual gains (the former apparently surpassing the 

latter), but not for problem-solving skills.  

A surprising thing is that, when looking at effect sizes through Cohen’s d for FCI 

conceptual learning gains, interactive engagement and regular instruction appear to have the same 

effect whereas novice modelling instruction falls behind, although all effects are large and positive. 

Another thing is that modelling instruction is a particular type of interactive engagement, so it is 

indeed surprising to see an effect size quite lower, although we also have to remember that it was 

a novice implementation without formal training in the method. This might be related to the spread 

of the data affecting the pooled standard deviation and the low participation rate in the Mod group, 

suggesting further studies with larger sample sizes would be useful to clarify the issue.  

Despite not distinguishing itself much, novice modelling instruction overall appears to have 

at least performed equivalently to other methods. There is still a suspicion that modelling 

instruction might be closer to interactive engagement, not only from a theoretical perspective, but 

from an experimental one as well if we recall that we did detect a statistically significant difference 

between the Mod and Reg groups based on the comparison of FCI post-test raw scores, considering 

there was no difference on pre-test scores. Comparisons in conceptual learning gains for rotation 

couldn’t be performed for lack of data, but conceptual learning gains for translational motion and 

forces show that all methods barely succeeded at helping students to transition from a pre-

Newtonian to a Newtonian worldview (all FCI average post-scores were close to 60%), interactive 

engagement (64.3%) and modelling instruction (66.2%) performing significantly better in this 

regard than regular instruction (53.6%). 
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4. SECOND RESEARCH QUESTION: STUDENT ATTITUDES ABOUT LEARNING 

PHYSICS 

Our second research question and corresponding hypotheses were the following: 

Q2: How does modelling instruction differ from regular instruction or interactive engagement in 

terms of attitudes (or beliefs) about physics for CEGEP Mechanics students? 

H2: CEGEP Mechanics students receiving modelling instruction, compared to regular instruction 

or interactive engagement, will perform differently on a pre/post standardized assessment 

(CLASS) of attitudes (or beliefs) about physics. 

H0: CEGEP Mechanics students receiving modelling instruction, compared to regular instruction 

or interactive engagement, will perform equivalently on a pre/post standardized assessment 

(CLASS) of attitudes (or beliefs) about physics. 

To answer this question about student attitudes toward physics and the learning of it, we 

collected responses to the CLASS. We then calculated various statistics like pre- and post-test 

scores, shifts, and effect sizes, which all appear in appendix A. Hereafter CLASS favourable and 

unfavourable attitude shifts will be examined and discussed. 
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4.1 CLASS favourable attitude shifts 

In this section, data will be analysed through a one-way ANOVA and Cohen’s d (effect 

size). The data will also be compared with the scientific literature. 

4.1.1 Analysis of variance 

A one-way ANOVA on favourable attitude shifts S was performed with 𝛼 = .05. Results 

are presented in tables 19 and 20, and figures 12 and 13.  

Table 19. Group means (%) on CLASS favourable shifts. 

Group N Mean StDev 95% CI 
Act 32 -1.37 17.87 (-7.82, 5.07) 
Mod 19 -1.57 12.02 (-7.36, 4.23) 
Reg 58 0.39 12.27 (-2.83, 3.62) 
 

Table 20. Analysis of variance on CLASS favourable shifts (Welch’s test). 

Source DF Num DF Den F-Value P-Value 
Group 2 44.8163 0.25 0.778 
 

 
Figure 12. Boxplot of CLASS favourable shifts. 
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Figure 13. Games-Howell pairwise comparisons for CLASS favourable shifts. 

The p-value (.778) is above 𝛼 = .05 and the Games-Howell pairwise comparisons fail to 

discard the null hypothesis. It appears that all three methods of teaching have produced sensibly 

the same effects. 

4.1.2 Effect size 

If we leave the ANOVA for a moment and look into the effect size dS based on the average 

shift and the pooled standard deviation of CLASS pre- and post-test favourable scores, and also 

into the corrected effect size dS, dep taking into account a possible dependence between the two 

scores modelled by Pearson’s coefficient of correlation r, we find results of table 21. As can be 

seen in the table, both Cohen’s effect size dS and the corrected Cohen’s effect size dS, dep are 

identical within two decimals.  
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Table 21. Effect size for the CLASS favourable shift, for different modes of instruction. 

Group N N* CLASS Favourable Shift  
Effect Size dS 

CLASS Favourable Shift  
Corrected Effect Size dS, dep 

Act 32 29 -0.08 -0.08 
Mod 19 1 -0.10 -0.10 
Reg 58 25 0.02 0.02 

 

If it is remembered that a negative effect size corresponds to a decrease whereas a positive 

one corresponds to an increase, and if we consider that ~0.2 is small, ~0.5 is medium, and ~0.8 is 

large, we find that novice modelling instruction (-0.10) and other interactive engagement methods 

(-0.08) appear to have a very small negative impact on students’ favourable attitudes toward the 

field (decreasing them) whereas the effect of regular instruction (0.02) appears nearly inexistent. 

4.1.3 Comparison with the scientific literature 

Beside comparing attitude shifts of a novice modelling instruction implementation with 

regular instruction and interactive engagement instruction at the researcher’s, it is interesting to do 

so with results from the literature. Looking for North American meta-analyses, or smaller studies 

if they are of particular interest, we found a few whose results are summarized in table 22. The 

main inconvenience of these studies is that the standard error is seldom reported. Yet, the data are 

still interesting and useful to risk some inferences. 
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Table 22. Statistics on CLASS attitude shifts, based on scientific literature. 

Test/Reference Ntot Measure (%) Modelling 
Instruction 

Interactive 
Engagement Traditional 

CLASS 
(Brewe et al., 2008) 24 Fav. <S> 8.6 * * 

CLASS 
(Brewe et al., 2009) 22 Fav. <S> a 12 * * 

CLASS 
(de la Garza & 
Alarcon, 2010) 

44 Fav. <S> 3.05 * * 

CLASS, MPEX 
(Madsen et al., 2015) 11,131 Fav. <S> 9.3 8.5 (explicit focus) 

0.7 (some focus) -3.7 

      

CLASS: Colorado Learning Attitudes about Science Survey  

MPEX: Maryland Physics Expectations Survey 

a Estimated graphically from figure 1 in their publication. 

 
Table 23. Comparable statistics on CLASS favourable attitude shifts for the F2018 research. 

Variable Group N N* Mean SE Mean StDev 
CLASS Average Favourable  
Attitude Shift <S> (%) 
   

Act 32 29 -1.37 3.16 17.87 
Mod 19 1 -1.57 2.76 12.02 
Reg 58 25 0.39 1.61 12.27 

 

Students’ views of the nature of physics and of learning physics as assessed by CLASS 

favourable shifts (table 23) present peculiar disparities. According to the literature, traditional 

instruction produces negative shifts of the order of -3.7% in favourable attitudes. The regular 

instruction group performed better at 0.4%, although not by much. The difference is nevertheless 

statistically significant (t-value = 2.54; p-value = .014). The interactive engagement group 

produced a shift of -1.4%, whereas the literature reports positive shifts between 0.7% when there 
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is some focus on developing expert-like beliefs, and 8.5% when there is an explicit focus on that. 

A one-sample t-test shows that the negative shift recorded in this research is small enough to be 

compatible with nearly inexistent shifts reported by Madsen, McKagan, and Sayre (2015) when 

there is only some focus on expert-like beliefs (t-value = -0.66; p-value = .517). 

Results from the modelling instruction group are somewhat more difficult to understand. 

The group performed negatively at -1.6% in favourable attitude shifts whereas modelling 

instruction is reported to perform between 3.1% in the case of the very small sample of de la Garza 

and Alarcon (2010) and 12% in the case of the other very small sample of Brewe, Kramer, and 

O’Brien (2009). Referring with more confidence to the large study of Madsen, McKagan, and 

Sayre (2015), courses focusing explicitly on model building – like Modelling Instruction (MI) but 

also including a few more model-focused pedagogies like Physics by Inquiry, Physics of Everyday 

Thinking (PET), Physical Science of Everyday Thinking (PSET), and Modelling Applied to 

Problem Solving (MAPS) – show a favourable shift of 9.3%. The difference is quite important 

(t-value = -3.94; p-value = .001), and if we believe it reflects reality despite the limitations of our 

research, it has to be explained. Further research would be beneficial to confirm any attempt at 

explaining this observation, but it can be hypothesized that the novice implementation of 

modelling instruction by the researcher didn’t optimize discourse management in a way that would 

have helped shift attitudes and beliefs toward physics more positively. The modelling group 

essentially performed like the interactive engagement group, which appeared compatible with 

common results interactive engagement with only some focus on developing expert-like beliefs. 
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4.2 CLASS unfavourable attitude shifts 

In this section, data will be analysed through a one-way ANOVA and Cohen’s effect size d.  

4.2.1 Analysis of variance 

A one-way ANOVA on unfavourable attitude shifts S was performed with α = .05. Results 

are presented in tables 24 and 25, and figures 14 and 15. 

Table 24. Group means (%) on CLASS unfavourable shifts. 

Group N Mean StDev 95% CI 
Act 32 0.03 16.75 (-6.00, 6.07) 
Mod 19 2.71 7.19 (-0.76, 6.18) 
Reg 58 0.01 9.24 (-2.42, 2.44) 
 

Table 25. Analysis of variance on CLASS unfavourable shifts (Welch’s test). 

Source DF Num DF Den F-Value P-Value 
Group 2 48.3104 0.90 0.413 

 

 
Figure 14. Boxplot of CLASS unfavourable shifts. 
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Figure 15. Games-Howell pairwise comparisons for CLASS unfavourable shifts. 

The p-value (0.413) is above 𝛼 = .05 and the Games-Howell pairwise comparisons fail to 

discard the null hypothesis. It appears that all three methods of teaching have produced sensibly 

the same effects.  

4.2.2 Effect size 

If we leave the ANOVA for a moment and look into the effect size dS based on the average 

shift and the pooled standard deviation of CLASS pre- and post-test unfavourable scores, and also 

into the corrected effect size dS, dep taking into account a possible dependence between the two 

scores modelled by Pearson’s coefficient of correlation r, we find results of table 26. As can be 

seen in the table, both Cohen’s effect size dS and the corrected Cohen’s effect size dS, dep are 

identical within two decimals. 
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Table 26. Effect size for the CLASS unfavourable shift, for different modes of instruction. 

Group N N* CLASS Unfavourable Shift 
Effect Size dS 

CLASS Unfavourable Shift 
Corrected Effect Size dS, dep 

Act 32 29 0.00 0.00 
Mod 19 1 0.24 0.24 
Reg 58 25 0.00 0.00 

 

If it is remembered that a negative effect size corresponds to a decrease whereas a positive 

one corresponds to an increase, and if we consider that ~0.2 is small, ~0.5 is medium, and ~0.8 is 

large, we find that novice modelling instruction (0.24) has a small negative impact on students’ 

unfavourable attitudes toward the field (increasing them) whereas the effect of regular instruction 

(0.00) and interactive engagement (0.00) appears essentially inexistent. 

4.3 Discussion 

No difference was found between groups for either favourable or unfavourable attitude 

shifts, and therefore the null hypothesis couldn’t be rejected. One surprise is that the average 

favourable attitude shift for interactive engagement (-1.4%) and modelling instruction (-1.6%) 

tends to be negative whereas the average unfavourable attitude shift for the same (Act: 0.03%; 

Mod: 2.7%) tends to be null or positive, as opposed to a near absence of effect for regular 

instruction (favourable: 0.39%; unfavourable: 0.01%), as if active learning of college physics, no 

matter the method, was worsening attitudes toward the field. It is normally reported that students 

leave typical physics courses believing that physics is less coherent, less logical, and less relevant 

to their everyday lives than when they started the course (McKagan et al., 2007) unless the course 

is explicitly focused on model-building and developing expert-like beliefs (Madsen et al., 2015). 

Yet, looking further at the numbers in our study, the averages (just like the effect sizes) are 
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relatively close to zero and the intervals of confidence go both ways. Perhaps then the average 

shifts in attitude don’t reflect the actual average shifts of the population, considering the intervals 

of confidence. This would be worth further investigation for confirmation. 

5. THIRD RESEARCH QUESTION: STUDENTS’ PERCEPTION OF MODELLING 

INSTRUCTION 

Our third research question was the following:  

Q3: How are CEGEP Mechanics students perceiving (in terms of what they like or don’t like) the 

introduction of modelling instruction? 

It was expected that students receiving modelling instruction would overall prefer this form of 

active learning, but we sought to capture the actual perception and reasons for it. 

To answer this question, we collected answers to a qualitative and open-ended survey at 

the end of the semester. Only 8 out of 35 students (23%) answered that anonymous survey online, 

so it is delicate to generalize to the whole class. Nevertheless, answers are reproduced in their 

integrality appendix A. A horizontal bar graph summarizing the frequency of main themes 

identified in modelling students’ comments is presented in figure 16. The overall positive or 

negative counts correspond to a number of students, whereas the various theme counts correspond 

to a number of times a theme has been expressed by the same or different students in answers to 

different questions, as a way to assess the weight of the perception. 
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Figure 16. Frequency of themes in modelling students’ comments to the end-of-semester 

appreciation survey.  

5.1 Discussion 

Of the eight students who answered, two (25%) could be said to have liked the experience, 

while the other six (75%) didn’t much. It’s hard to presume the representativeness of such a small 

sample, but at the same time, we can try to make sense of the experience of those who decided to 

answer. In a sense, negative feedback is not that different from the one that is reported from other 

teachers when they move from traditional and more passive classrooms to more active learning 
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classrooms, where the student must be engaged to learn. Wells (1987) reminds us that “[t]he 

reaction of students to a course in physics that is structured around concept development—nothing 

to memorize—initially induces high frustration levels, accompanied by frequent requests to be told 

what they should ‘know’ for the tests” (p. 36). 

According to the survey, many students seemed to prefer to be told what to memorize rather 

than discover by themselves and face the initial uncertainty of building knowledge as real scientists 

do through experiments, observations, and debates when they try to explain a new phenomenon 

that previous models cannot fully explain. It’s certainly more cognitively demanding to fully 

immerse oneself in the process, as student E admits when saying that “[i]t requires more work”, 

and not all students are willing to take such an active role. We see that in student A complaining 

about the course being mostly “self-taught” and preferring “some more direct instruction of 

theory”, or student G feeling “as if it were the students teaching themselves” and preferring 

“precise class notes to follow along.” Such complaints are quite common in active learning, no 

matter the method and despite improved performance on average. At the same time, it must be 

recognized that a novice implementation of modelling instruction was performed. It’s possible that 

the delicate and optimal balance between autonomous work and guidance was somewhat offset. 

Many students seemed to prefer the “sage on the stage” approach, placing in the teacher 

the role of true knowledge deliverer. Student B thus mentions: “Best way: copying notes and 

having good explanation from teacher.” Student C also mentions: “The material of the course 

should be explained by the teacher first then put into application by the students and not the 

opposite.” Student D reinforces this by explaining that he or she preferred when “the teacher 
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explained all the material and well leaded the class for the final exam” (as in Chemistry). Those 

complaints could be related to the strong desire for explicit guidance mentioned earlier, or relate 

to the epistemological figure of the teacher as it is interpreted here. These are also common in 

active learning. It shows the necessity to develop ways to sustain a transformation of epistemic 

beliefs of students, or of their relation to experts and scientific knowledge, an aspect that a more 

expert implementation of modelling instruction might improve more than what appears here based 

on a relatively limited novice implementation. 

Other students seemed to be deficient in their understanding of the experimental foundation 

of physics, by whishing theory had more importance in the course. It’s the case of student C when 

saying: “I don’t like the fact that it relies mostly on experiments rather than theory.” But other 

students did enjoy the stronger emphasis on lab experiments, like students E (with some nuances 

about the way it was done and their grading) and F, or teamwork like student G (although it’s not 

clear if by teamwork the student was thinking about the labs). 

Some students felt they didn’t learn as they should how to solve problems. Student C “had 

difficulty applying [concepts] in problems,” adding that “I feel like I didn’t learn to apply some of 

the concepts we saw in this course quite well in problems.” Student B mentions: “I don’t know 

how to solve challenging mechanics problems.” Student E said the modelling approach “wasn't as 

useful for exam preparation and getting a good R-score.” That being said, this can happen with 

other approaches as well, especially if solving problems doesn’t involve following recipes blindly 

anymore. On the other hand, some students like C, E and F found modelling fun and helpful in 

understanding concepts and in retaining the information learned better. 
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Perhaps most students who participated in the research and answered the survey realized 

that college physics was not exactly like they imagined from their high-school experience, that 

simple “plug-and-chug” in equations was not sufficient. This might have affected their attitudes 

and they may have attributed that to modelling instruction whereas it would have been attributed 

to any other interactive method of teaching if it had happened to be the one employed to teach the 

course. It would be interesting to compare attitudes and perceptions when an active class is 

surrounded by more traditional classes to what they are when a whole department has adopted 

active learning methods, thus becoming the norm. 

In any case, although surprising for modelling instruction (and thus contrary to our 

expectation), results are consistent with what Deslauriers, McCarty, Miller, Callaghan, and Kestin 

(2019) report: “When students experience the increased cognitive effort associated with active 

learning, they initially take that effort to signify poorer learning. […] Compared to students in 

traditional lectures, students in active classes perceived that they learned less, while in reality they 

learned more. Students rated the quality of instruction in passive lectures more highly, and they 

expressed a preference to have ‘all of their physics classes taught this way,’ even though their 

scores on independent tests of learning were lower than those in actively taught classrooms” (p. 

19251). 

 



SIXTH CHAPTER. CONCLUSION 

This research measured the impact on learning outcomes and attitude shifts of modelling 

instruction in a CEGEP introductory physics course, namely Mechanics, compared to regular and 

interactive engagement instruction. The main objective was to find out if a novice implementation 

of modelling leads to significant changes or not. A secondary objective was to gain some insights 

into students’ perceptions of the new instructional design. Thus, we had three research questions 

to investigate. 

1. CLOSING STATEMENTS ON RESEARCH QUESTIONS 

The first research question was: How does modelling instruction differ from regular 

instruction or interactive engagement in terms of learning outcomes for CEGEP Mechanics 

students? According to other studies found in the literature (Hake, 1998; Hestenes, 2000, 2006; 

Brewe et al., 2010; Von Korff et al., 2016), novice modelling instruction compares with interactive 

engagement and surpasses traditional instruction on FCI normalized gains, whereas expert 

modelling instruction surpasses both. It was thus hypothesized that students receiving modelling 

instruction would perform differently on pre/post standardized assessments of deep conceptual 

understanding (FCI, RRMCS) and on more traditional exams testing problem-solving skills. No 

support for this hypothesis was found, overall, through the statistical analysis, except for FCI post-

test scores when compared with regular instruction (p-value between .007 and .019 depending on 

the test). 
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The second research question was: How does modelling instruction differ from regular 

instruction or interactive engagement in terms of attitudes (or beliefs) about physics for CEGEP 

Mechanics students? According to the literature (Madsen et al., 2015), modelling instruction 

compares with interactive engagement that has an explicit focus on developing expert-like beliefs 

when those attitudes are measured through CLASS or MPEX favourable attitude shifts. On the 

other hand, it surpasses both interactive engagement with a more limited focus and traditional 

instruction. It was thus hypothesized that students receiving modelling instruction would perform 

differently on a pre/post standardized assessment (CLASS) of attitudes (or beliefs) about physics. 

It was found that the researcher’s novice implementation of modelling instruction couldn’t be 

distinguished from colleagues’ implementation of either interactive engagement or regular 

instruction (which included some interactive teaching on a limited basis), all methods failing 

equally at improving attitudes toward physics and its learning. Fortunately, attitudes didn’t appear 

to worsen either, but our alternative hypothesis couldn’t find support. 

The third research question was: How are CEGEP Mechanics students perceiving (in terms 

of what they like or don’t like) the introduction of modelling instruction? Because modelling 

instruction is believed to foster a better understanding of physics, it was expected that students 

receiving modelling instruction would overall prefer this form of active learning. It was found, 

based on a qualitative survey and the relative percentage of positive versus negative perceptions, 

that the researcher’s implementation of modelling instruction produced more dissatisfaction than 

satisfaction, which, although saddening, is consistent with what is reported for other, non-

modelling methods fostering active learning (Wells, 1987; Deslauriers et al., 2019). It must be 

remembered, though, that the level of participation in that survey was very low (23%). 
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2. LIMITATIONS OF THE STUDY 

The primary focus of this study was to find out if modelling instruction produced different 

learning outcomes and attitudes compared to regular or interactive instruction. Our analysis has 

not detected any significant difference (be it positive or negative). It therefore appears that novice 

modelling instruction has been as good as other modes of instructions. Yet, based on the literature, 

we would have expected modelling instruction to show significant improvements in comparison 

to regular instruction. We can offer some possible explanations for that. 

2.1 Implementation of modelling instruction and regular instruction 

First, modelling instruction was applied in a novice manner, in the sense that the researcher 

investigated the method, but never had formal training to implement it. Hake (1998) mentions, 

when discussing interactive engagement (IE) courses leading to low normalized gains or averages 

〈𝑔〉, that various implementation problems were apparent in cases he studied: “insufficient training 

of instructors new to IE methods, failure to communicate to students the nature of science and 

learning, lack of grade incentives for taking IE activities seriously, a paucity of exam questions 

which probe the degree of conceptual understanding induced by the IE methods, and use of IE 

methods in only isolated components of a course” (p. 66). The researcher feels that insufficient 

training in modelling instruction and lack of grade incentives for taking modelling activities 

seriously (most of it was formative, not summative) may have affected the situation, although he 

also feels that the nature of science and learning was properly communicated, that tests included a 

good balance between problem-solving and conceptual questions, and that the modelling method 

was systematically applied throughout the whole course. On that latter point, however, it must be 
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mentioned that the rigid structure of two hours of lab time and twice two hours (including an added 

hour of special support all Mechanics teachers give to help students succeed) of class time once a 

week made it difficult to adopt a proper pace: most often modelling activities (be they in the 

development or deployment phases) would be rushed to be ready for the next lab activity which 

could only be done on a specific day of the week whereas at rarer, less problematic times, the pace 

would be slowed down and more opportunities for whiteboarding problems would appear. 

Therefore, it is possible that this novice, not optimized, implementation of modelling instruction, 

compounded by time issues and some teams not taking whiteboarding sessions as seriously as they 

should, did reduce effects documented in the literature. An expert, well-trained modeller might 

more easily deal with constraints and still maintain expected learning gains. 

Hestenes (1997) also discusses conditions for effective modelling instruction. He states that 

“teacher guidance is essential throughout the modelling cycle” (p. 953) and that “[t]he most critical 

element in successful implementation of the modelling method is the skill of teacher in managing 

classroom discourse” (p. 954). Again, the balance between too much guidance and not enough is 

not easy to set, and the novice approach of the researcher, compounded by time constraints whereas 

a typical modelling cycle is at least two weeks long with about a week for model development and 

a week for model deployment (Hestenes, 1997), may not have allowed modelling instruction to 

express its full potential, although it has proven not to be harmful. After all, based on the data that 

were collected, the researcher’s novice modelling instruction couldn’t be differentiated from either 

interactive engagement nor regular instruction, whereas on the FCI we could find a significant 

difference between interactive engagement and regular instruction. 
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On the other hand, regular instruction was not purely traditional, lecture-based instruction. 

Some form of active learning was part of regular instruction, although in a reduced way (on the 

order of 20-40%). That may have reduced the differences further, although differences were strong 

enough to be found significant on the FCI averages of normalized gains between the interactive 

engagement and the regular instruction groups. 

2.2 Timing of pre-tests 

Second, most pre-tests (FCI, CLASS, RRMCS) were administered a little bit late, three 

weeks after the start of the semester. Although it is believed the impact on the FCI for the 

modelling instruction group is rather limited, it might not have been so in other groups if they had 

already started discussing some topics like kinematics, forces, and/or momentum (the order of the 

topics depends on the teacher). It was still early in the semester, but not exactly as if questions 

would have been answered on the very first day of college mechanics. It is possible that some FCI 

gains were therefore reduced by a larger pre-test score (or at least changed, if we don’t assume the 

direction of that change in case regression precedes learning), or that attitudes assessed on the 

CLASS had already started to shift. For the RRMCS, an impact would be very surprising as this 

test is on a topic (rotation) that has never been explored by students in a physics class before. In 

the only study that we could find using the RRMCS test, the developers used it only after 

instruction (Rimoldini & Singh, 2005). 
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2.3 Sampling issues 

Third, we must recognize limits to the sampling. This quasi-experiment was based on 

convenience and intact, non-random samples with relatively small sizes, especially for the 

treatment, modelling instruction, group (20 consenting students for novice modelling, as opposed 

to 83 and 61 for regular instruction and active learning, respectively). Furthermore, those 

consenting students did not represent the totality of the sections (57% for novice modelling, versus 

81% and 86% for regular instruction and active learning, respectively), and not all of them 

completed both the pre- and post-tests (as little as 45% for the CLASS test in the active learning 

group, and 57% for the FCI and RRMCS tests in the modelling group).  

A power analysis can be useful here to gain insights into the possibility of type II errors. 

Requiring a statistical power (1 − 𝛽) = .80 and assuming a pooled standard deviation of 20% 

(approximately like for the FCI normalized gains, at 22.5%, and final exam grades, at 19.0%) 

while setting the significance threshold at 𝛼 = .05, we can calculate the maximum difference 

between means for various sample sizes: 20, 50, 79 (table 27 and figure 17). That maximum 

difference is the mean difference that can be detected between the factor level that has the smallest 

mean and the factor level that has the largest mean. Its value should represent the smallest 

difference that has practical consequences. The novice modelling sample group had a total of 19-

20 observations, whereas the regular instruction group had at most 79 observations. Assuming 

groups of the same size, a size of 20 leads to a maximum difference of 20.2% whereas a size of 79 

leads to a value of 9.9%. The range of maximum differences between means remains relatively 

high, generating doubts about the capacity of the statistical tests to detect small differences in FCI 
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normalized gains and final exam grades, especially between the novice modelling group and other 

groups. 

Doing the same calculations with an assumed pooled standard deviation of 14% (closer to 

what we have for attitude shifts, at 14.1%), a sample size of 20 leads to a maximum difference of 

14.1% whereas a sample size of 79 leads to a value of 7.0% (table 28 and figure 18). The range of 

maximum differences between means improves and we can have slightly more confidence in the 

capacity of the statistical tests to avoid type II errors and detect small practical differences in 

attitude shifts, which we failed to detect. 

Table 27. Power analysis for FCI normalized 
gains and final exam grades. 

Sample Size Power Maximum 
Difference 

20 0.8 20.1589 
50 0.8 12.5435 
79 0.8 9.9411 

The sample size is for each level. 

Table 28. Power analysis for CLASS shifts. 
 

Sample Size Power Maximum 
Difference 

20 0.8 14.1112 
50 0.8 8.7805 
79 0.8 6.9588 

The sample size is for each level. 

 
Figure 17. Power analysis for FCI normalized 

gains and final exam grades. 

 

 
Figure 18. Power analysis for CLASS shifts. 
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Yet, despite insights gained from power analyses, we must keep in mind that the 

representativity of results may have been compromised, even for a single class. Indeed, it might 

happen that those students who didn’t consent to participate had a particular profile, and who once 

removed changed the overall distribution and biased the data. This is a serious limitation that we 

couldn’t assess precisely as we didn’t have access to those data for ethical reasons. 

2.4 Other methodological issues 

Fourth, possible lurking variables could have compromised the study. Differences in 

students’ traits (like autonomy, self-motivation, etc.) and differences in socioeconomic status 

could have had an impact, yet data about that would have been hard and delicate to gather. One 

might think that over a semester in a single college with a particular culture and demographics, 

those elements would average out over a given group and lead to the comparability of other groups 

from the same institution. It cannot be said so if one would like to generalize to other institutions 

or locations, though, and thus this should be done very carefully. 

Students’ skillset differences due to previous knowledge, education, or performance, could 

also have influenced results, but that is why we had conceived a design where post-test results 

were compared to pre-test results to extract normalized learning gains and changes, and where 

effect sizes were calculated to corroborate findings. Our analysis of FCI pre-test scores and CLASS 

pre-test favourable attitude scores didn’t detect any statistically significant difference between 

groups, so groups appeared comparable in this regard. Nevertheless, intact group sampling was 

used instead of true random sampling. Participants were not chosen at random, and the distribution 

of those participants between the treatment group (Mod) and control groups (Reg and Act) were 
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not random either, for we used existing class sections. This limits the generalizability of the 

research, but it could hardly have been done otherwise. 

Finally, because the researcher used his class while also running the research, there was a 

possibility of bias as behaviours might have been unconsciously driven by the hypothesis he aimed 

to validate. Considering results, though, this possible bias seems unlikely. 

3. IMPLICATIONS FOR FUTURE RESEARCH 

Considering limitations, future research is likely required to confirm and expand upon 

results presented herein. The obvious avenue would be to conduct again the same kind of research, 

in the same or a different college. It would also be very interesting to do this research with an 

expert modeller, or at least with a novice modeller after formal training in the method (with one or 

a few modelling workshops under his or her belt). This was not the case in the present study, 

although documentation and videos were consulted to gain insights. 

Considering that, if confirmed, all methods at best barely succeeded at helping students to 

reach a stage of Newtonian reasoning, further research on why and how to better achieve this goal 

through a first Mechanics course after high school would be useful. A broader look at Quebec’s 

educational system and a reflection on it, besides teaching methods, may also be of interest. 

A major avenue of further research is the comparison of different methods of instruction in 

helping students improve their conceptual understanding of rotation. One study using the RRMCS 

was done on traditional instruction (Rimoldini & Singh, 2005). This research has collected data 
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for novice modelling instruction. We didn’t find any other studies and there is, therefore, a lot of 

room for further studies on this particular topic. 

Another major path of research would be the study of the deterioration or lack of 

amelioration of attitudes toward physics and its learning as students go through a formal course. 

Why are such courses typically leading to less expert-like beliefs at worst, no change at best? The 

literature (Madsen et al., 2015) reports an amelioration for modelling instruction and interactive 

engagement with an explicit focus on those attitudes and beliefs, but this research hasn’t seen such 

amelioration. This should be validated as well. 

Finally, we reported a significant, although not necessarily representative, dissatisfaction 

of students with modelling instruction. We know this to be also the case with other interactive 

engagement methods (Wells, 1987; Deslauriers et al., 2019). It would be interesting to compare 

attitudes and perceptions when an interactive engagement class is surrounded by more traditional 

classes to what they are when a whole department has adopted interactive engagement methods, 

thus becoming the norm. 

4. IMPLICATIONS FOR FUTURE TEACHING PRACTICE 

This research has shown that novice modelling instruction appears to be as good as other 

methods of teaching, thus encouraging teachers to give it a try if they wish. However, we suspect 

it to produce results closer to interactive engagement considering its nature, the mean values 

calculated and other studies we mentioned previously. The inability to replicate the high 

conceptual learning gains and favourable attitude shifts reported in the literature seems to indicate 
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that there is great potential yet to uncover, but that to tap into it, formal training in the method 

given by expert modellers is probably necessary for many to extract all the benefits that have been 

documented elsewhere. It is thus recommended for curious and potential adopters, including the 

researcher, to attend workshops (as those developed at ASU or through the AMTA) that provide a 

living experience of the method as alternatively student and teacher, and develop skills in discourse 

management. This should be accompanied by a reflection on assessments or other techniques that 

would further motivate students to change their habits and get actively involved with all modelling 

activities, and an attempt at securing lab space more often to enhance flexibility in the scheduling 

of lab or other hands-on modelling activities. 

5. CONCLUDING REMARKS 

Physics is a discipline in which many students struggle, partly because they are filled with 

conflicting preconceptions. Therefore, it is important to find ways of teaching that are more 

effective in dislodging those unviable conceptions while helping students successfully learn both 

the fundamentals and the culture of science in general, and physics in particular.  

Keeping limitations in mind, this research seems to indicate that novice modelling 

instruction didn’t produce better or worse learning gains and attitude shifts than interactive 

engagement or regular instruction with limited interactive learning, at least in a statistically 

significant manner. Thus, it was shown that in the particular implementation and context of the 

researcher, novice modelling instruction performed equivalently on all grounds. Considering 

results reported in the literature, it is believed that formal training and further experience with the 

method would have led to improved results, therefore justifying further attempts at using 
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modelling instruction under a deliberate practice of continuous improvement. Further research 

should, however, be done to confirm present results and reduce possible biases due to limitations 

of this study. 
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1. DESCRIPTIVE STATISTICS 

Descriptive statistics for instruments that were used are presented in tables 29 to 32. 

Table 29. Descriptive statistics for the FCI test, for different modes of instruction. 

Variable Group N N* Mean SE Mean StDev 
FCI Pre-Score (%) 
   
   

Act 51 10 39.34 2.82 20.16 
Mod 20 0 44.34 4.29 19.20 
Reg 61 22 34.48 1.82 14.25 

   
      

FCI Post-Score (%) 
   
   

Act 51 10 64.25 2.69 19.19 
Mod 20 0 66.17 4.74 21.20 
Reg 61 22 53.55 1.97 15.40 

   
      

FCI Average Gain <G> (%) 
   
   

Act 51 10 24.90 2.20 15.71 
Mod 20 0 21.84 4.31 19.27 
Reg 61 22 19.07 1.74 13.55 

   
      

FCI Normalized Gain of Averages <g> (%) 
   
   

Act 51 10 41.06 * * 
Mod 20 0 39.22 * * 
Reg 61 22 29.11 * * 

   
      

FCI Average of Normalized Gains gavg (%) 
   
   

Act 51 10 43.39 3.39 24.21 
Mod 20 0 40.56 6.33 28.31 
Reg 61 22 29.13 2.38 18.59 

   
      

FCI Normalized Change of  
Averages <c> (%) 
   

Act 51 10 41.06 * * 
Mod 20 0 39.22 * * 
Reg 61 22 29.11 * * 

   
      

FCI Average of Normalized  
Changes cavg (%) 
   

Act 51 10 43.34 3.41 24.32 
Mod 20 0 40.84 6.20 27.73 
Reg 61 22 29.05 2.40 18.75 

   
      

FCI Gain Effect Size dG  
   
   

Act 51 10 1.27 * * 
Mod 20 0 1.08 * * 
Reg 61 22 1.29 * * 

   
      

FCI Corrected Gain Effect Size dG, dep  
   
   

Act 51 10 1.26 * * 
Mod 20 0 1.08 * * 
Reg 61 22 1.28 * * 
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Table 30. Descriptive statistics for the RRMCS test, for different modes of instruction. 

Variable Group N N* Mean SE Mean StDev 
RRMCS Pre-Score (%) 
   
   

Act 0 61 * * * 
Mod 20 0 35.66 3.26 14.60 
Reg 0 83 * * * 

   
      

RRMCS Post-Score (%) 
   
   

Act 0 61 * * * 
Mod 20 0 48.49 4.59 20.53 
Reg 0 83 * * * 

   
      

RRMCS Average Gain <G> (%) 
   
   

Act 0 61 * * * 
Mod 20 0 12.83 2.70 12.05 
Reg 0 83 * * * 

   
      

RRMCS Normalized Gain of  
Averages <g> (%) 
   

Act 0 61 * * * 
Mod 20 0 19.95 * * 
Reg 0 83 * * * 

   
      

RRMCS Average of Normalized  
Gains gavg (%) 
   

Act 0 61 * * * 
Mod 20 0 23.41 6.21 27.77 
Reg 0 83 * * * 

   
      

RRMCS Normalized Change of  
Averages <c> (%) 

Act 0 61 * * * 
Mod 20 0 19.95 * * 
Reg 0 83 * * * 

   
      

RRMCS Average of Normalized  
Changes cavg (%) 
   

Act 0 61 * * * 
Mod 20 0 22.46 6.51 29.11 
Reg 0 83 * * * 

   
      

RRMCS Gain Effect Size dG 
   
   

Act 0 61 * * * 
Mod 20 0 0.72 * * 
Reg 0 83 * * * 

   
      

RRMCS Corrected Gain Effect Size dG, dep 
   
   

Act 0 61 * * * 
Mod 20 0 0.65 * * 
Reg 0 83 * * * 
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Table 31. Descriptive statistics for the 78%-common final exam, for different modes of 

instruction. 

Variable Group N N* Mean SE Mean StDev 
78%-Common Final Exam  
Average Grade (%) 

Act 56 5 67.61 2.72 20.37 
Mod 20 0 62.53 3.50 15.67 
Reg 79 4 68.26 2.11 18.79 
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Table 32. Descriptive statistics for the CLASS test for different modes of instruction. 

Variable Group N N* Mean SE Mean StDev 
CLASS Favourable Pre-Score (%) 
   
   

Act 32 29 57.71 2.91 16.47 
Mod 19 1 62.26 3.73 16.26 
Reg 58 25 57.34 2.17 16.52 

   
      

CLASS Favourable Post-Score (%) 
   
   

Act 32 29 56.35 3.35 18.98 
Mod 19 1 60.67 3.72 16.24 
Reg 58 25 57.73 2.12 16.16 

   
      

CLASS Average Favourable  
Attitude Shift <S> (%) 
   

Act 32 29 -1.37 3.16 17.87 
Mod 19 1 -1.57 2.76 12.02 
Reg 58 25 0.39 1.61 12.27 

   
      

CLASS Favourable Shift Effect Size dS 
   
   

Act 32 29 -0.08 * * 
Mod 19 1 -0.10 * * 
Reg 58 25 0.02 * * 

   
      

CLASS Favourable Shift Corrected  
Effect Size dS, dep 
   

Act 32 29 -0.08 * * 
Mod 19 1 -0.10 * * 
Reg 58 25 0.02 * * 

   
      

CLASS Unfavourable Pre-Score (%) 
   
   

Act 32 29 20.27 1.81 10.26 
Mod 19 1 17.62 2.64 11.52 
Reg 58 25 18.88 1.27 9.70 

   
      

CLASS Unfavourable Post-Score (%) 
   
   

Act 32 29 20.32 2.45 13.85 
Mod 19 1 20.31 2.46 10.73 
Reg 58 25 18.88 1.45 11.01 

   
      

CLASS Average Unfavourable  
Attitude Shift <S> (%) 
   

Act 32 29 0.03 2.96 16.75 
Mod 19 1 2.71 1.65 7.19 
Reg 58 25 0.01 1.21 9.24 

   
      

CLASS Unfavourable Shift Effect Size dS 
   
   

Act 32 29 0.00 * * 
Mod 19 1 0.24 * * 
Reg 58 25 0.00 * * 

   
      

CLASS Unfavourable Corrected  
Shift Effect Size dS, dep 
   

Act 32 29 0.00 * * 
Mod 19 1 0.24 * * 
Reg 58 25 0.00 * * 
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2. COMPARABILITY OF GROUPS 

Before doing any statistical analysis, we must verify that groups are comparable. As a 

minimal indicator of comparability, a one-way analysis of variance (ANOVA) was performed, 

with 𝛼 = .05, on both FCI pre-test scores and CLASS pre-test favourable scores.  

2.1 FCI pre-test scores 

The normality of FCI pre-test scores was first assessed with the Anderson-Darling test 

(Stephens, 1974) for all three groups: modelling instruction (Mod), interactive engagement (Act), 

and regular instruction (Reg). Results are presented in figure 19. The absolute skewness varies 

between 0.12 and 1.00 whereas the absolute kurtosis varies between 0.34 and 0.94. Yet, only one 

dataset (Act) has a p-value (< 0.005) below 𝛼 = .05 for normality. This is however sufficient to 

proceed to a test for equal variances without assuming a normal distribution. The test for equal 

variances fails to reject the null hypothesis with a p-value larger than .05 with both multiple 

comparisons and Levene’s test (Levene, 1960) (see figure 20). Because of that, the ANOVA has 

been performed with the assumption of equal variances (along with an error rate for comparisons 

set at 5 in both cases). Results are in tables 33 and 34, and figures 21 and 22. The p-value (.072) 

for the ANOVA is above 𝛼 = .05 and none of the many tests performed on FCI pre-test scores 

leads us to discard the null hypothesis (equal means), except for the Fisher pairwise comparison 

(𝑝 = .031) and the Hsu comparison with the best in the case of the FCI pre-scores of the Mod 

versus the Reg groups (𝑝 = .029). Considering all tests and the ANOVA p-value, it seems 

reasonable to hypothesize the comparability of groups in terms of initial physics conceptual 

understanding and to proceed with further analysis of the data. 
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Figure 19. Summary descriptive statistics and probability plots of normality for FCI pre-test 

scores. 
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Figure 20. Test for equal variances for FCI pre-test scores. 

 

Table 33. Group means (%) on FCI pre-test scores. 

Group N Mean StDev 95% CI 
Act 51 39.34 20.16 (34.50, 44.19) 
Mod 20 44.34 19.20 (36.60, 52.08) 
Reg 61 34.48 14.25 (30.05, 38.91) 

Pooled StDev = 17.4990 

 

Table 34. Analysis of variance on FCI pre-test scores. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Group 2 1648 4.01% 1648 824.0 2.69 0.072 
Error 129 39502 95.99% 39502 306.2   
Total 131 41150 100.00%     
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Figure 21. Boxplot of FCI pre-test scores. 

 
 

 
 

 
 

 
 

Figure 22. Tukey and Fisher pairwise comparisons, Dunnett multiple comparisons with the 

control (Reg), and Hsu multiple comparisons with the best (MCB) for FCI pre-test 

scores.  
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2.2 CLASS pre-test favourable scores 

The normality of CLASS pre-test favourable scores was first assessed with the Anderson-

Darling test (Stephens, 1974) for all three groups: modelling instruction (Mod), interactive 

engagement (Act), and regular instruction (Reg). Results are presented in figure 23. The CLASS 

pre-test favourable attitude scores present an absolute skewness varying between 0.12 and 0.38 

whereas their absolute kurtosis varies between 0.24 and 0.61. All have p-values for normality 

above 𝛼 = .05 (lowest one is .07), justifying the assumption of a normal distribution to test for 

equal variances. Bartlett’s test (Snedecor & Cochran, 1983) fails to reject the null hypothesis (see 

figure 24). Because of that, the ANOVA has been performed with the assumption of equal 

variances (along with an error rate for comparisons set at 5 in both cases). Results are in tables 35 

and 36, and figures 25 and 26. The p-value (.514) for the ANOVA is above 𝛼 = .05 and none of 

the many tests performed on CLASS pre-test scores leads us to discard the null hypothesis (equal 

means). It thus seems reasonable to hypothesize the comparability of groups in terms of initial 

attitudes toward physics and to proceed with further analysis of the data. 
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Figure 23. Summary descriptive statistics and probability plots of normality for CLASS pre-test 

favourable scores. 
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Figure 24. Test for equal variances for CLASS pre-test favourable scores. 

 

Table 35. Group means (%) on CLASS pre-test favourable scores. 

Group N Mean StDev 95% CI 
Act 32 57.71 16.47 (51.94, 63.48) 
Mod 19 62.26 16.26 (54.77, 69.74) 
Reg 58 57.34 16.52 (53.05, 61.62) 

Pooled StDev = 16.4608 

 

Table 36. Analysis of variance on CLASS pre-test favourable scores. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Group 2 362.5 1.25% 362.5 181.2 0.67 0.514 
Error 106 28721.5 98.75% 28721.5 271.0       
Total 108 29084.0 100.00%             
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Figure 25. Boxplot of CLASS pre-test favourable scores. 

 
 

 
 

 
 

 
 

Figure 26. Tukey and Fisher pairwise comparisons, Dunnett multiple comparisons with the 

control (Reg), and Hsu multiple comparisons with the best (MCB) for CLASS pre-test 

favourable scores.  
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3. FIRST RESEARCH QUESTION: LEARNING OUTCOMES 

3.1 Conceptual understanding through FCI raw scores 

A one-way analysis of variance (ANOVA) with 𝛼 = .05 was performed on the FCI post-

test scores. The normality was first assessed with the Anderson-Darling test (Stephens, 1974) for 

all three groups: modelling instruction (Mod), interactive engagement (Act), and regular 

instruction (Reg). Results are presented in figure 27. The absolute skewness varies between 0.06 

and 0.13 whereas the absolute kurtosis varies between 0.15 and 1.11. All datasets have p-values 

above 𝛼 = .05 for normality, the lowest one being .115. We could, therefore, proceed to a test for 

equal variances with the assumption of a normal distribution. The Bartlett’s test (Snedecor & 

Cochran, 1983) for equal variances finds a p-value of .126, which cannot reject the null hypothesis 

(see figure 28). Because of that, the ANOVA on FCI post-test scores was performed assuming 

equal variances (along with an error rate for comparisons set at 5). Results are in tables 37 and 38, 

and figures 29 and 30. We find a p-value of .002, lower than 𝛼 = .05, leading us to conclude that 

there is a statistically significant difference between groups. To locate this difference, we 

performed various tests. Looking at Tukey and Fisher pairwise comparisons, at Dunnet multiple 

comparisons with the Reg control, and at Hsu multiple comparisons with the best (Mod), all 

suggest a statistically (and practically) significant difference between the regular instruction group 

and both interactive engagement and modelling instruction groups. No significant difference is 

suggested between interactive engagement and modelling instruction groups, however.  
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Figure 27. Summary descriptive statistics and probability plots of normality for FCI post-test 

scores. 
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Figure 28. Test for equal variances for FCI post-test scores. 

 

Table 37. Group means (%) on FCI post-test scores. 

Group N Mean StDev 95% CI 
Act 51 64.25 19.19 (59.30, 69.20) 
Mod 20 66.17 21.20 (58.27, 74.08) 
Reg 61 53.55 15.40 (49.03, 58.08) 

Pooled StDev = 17.8673 

 

Table 38. Analysis of variance on FCI post-test scores. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Group 2 4197 9.25% 4197 2098.3 6.57 0.00191 
Error 129 41182 90.75% 41182 319.2 

  

Total 131 45379 100.00% 
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Figure 29. Boxplot of FCI post-test scores. 

 
 

 
 

 
 

 
 

Figure 30. Tukey and Fisher pairwise comparisons, Dunnett multiple comparisons with the 

control (Reg), and Hsu multiple comparisons with the best (MCB) for FCI post-test 

scores.  
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3.2 Conceptual learning gains on the FCI test 

3.2.1 Analysis of variance 

A one-way ANOVA on normalized gains g was performed with 𝛼 = .05. The normality 

was first assessed with the Anderson-Darling test (Stephens, 1974) for all three groups: modelling 

instruction (Mod), interactive engagement (Act), and regular instruction (Reg). Results are 

presented in figure 31. The absolute skewness varies between 0.12 and 0.32 whereas the absolute 

kurtosis varies between 0.28 and 0.68. Furthermore, p-values for normality are all above 𝛼 = .05, 

the lowest being .341. The normality test thus fails to reject the null hypothesis. We, therefore, 

proceeded to a test for equal variances, assuming a normal distribution. This leads to a rejection of 

the null hypothesis with Bartlett’s test (Snedecor & Cochran, 1983) giving a p-value equal to .035 

(figure 32), lower than 𝛼 = .05, although not by much. Because of that, the ANOVA on 

normalized gains was performed without assuming equal variances (error rate for comparison set 

at 5). Results are presented in tables 39 and 40, and figures 33 and 34. We find a p-value of .004, 

lower than 𝛼 = .05, leading us to conclude that there is a statistically significant difference 

between groups. To locate this difference, we performed Games-Howell pairwise comparisons. 

This test suggests a statistically (and practically) significant difference between regular instruction 

and interactive engagement, but it didn’t detect any difference between novice modelling 

instruction and either interactive engagement or regular instruction. The null hypothesis (equal 

means) cannot be rejected for novice modelling instruction. 

  



136  Detailed Statistical Data Analyses 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 31. Summary descriptive statistics and probability plots of normality for FCI normalized 

gains. 
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Figure 32. Test for equal variances for FCI normalized gains. 

Table 39. Group means (%) on FCI normalized gains. 

Group N Mean StDev 95% CI 
Act 51 43.39 24.21 (36.59, 50.20) 
Mod 20 40.56 28.31 (27.32, 53.81) 
Reg 61 29.13 18.59 (24.37, 33.89) 

 

Table 40. Analysis of variance on FCI normalized gains (Welch’s test). 

Source DF Num DF Den F-Value P-Value 
Group 2 47.4596 6.35 0.00359 

 

 
Figure 33. Boxplot of FCI normalized gains. 
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Figure 34. Games-Howell pairwise comparisons for FCI normalized gains. 

3.2.2 Effect size 

If we look into the effect size dG based on the average gain and the pooled standard 

deviation of FCI pre- and post-test scores, and also into the corrected effect size dG, dep taking into 

account a possible dependence between the two scores modelled by Pearson’s coefficient of 

correlation r, we find results of table 41. Figure 35 shows the matrix plots of FCI post-test scores 

versus pre-test scores leading to an evaluation of Pearson’s r. As can be seen in table 41, both 

Cohen’s effect size dG and the corrected Cohen’s effect size dG, dep are nearly identical within two 

decimals. 
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Table 41. Effect size for the FCI gain, for different modes of instruction. 

Group N N* FCI Gain Effect Size dG FCI Gain Corrected Effect Size dG, dep 
Act 51 10 1.27 1.26 
Mod 20 0 1.08 1.08 
Reg 61 22 1.29 1.28 

 

 
 

 
 

 
 

 
 

Figure 35. Matrix plots of FCI post-test scores versus pre-test scores. 
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3.3 Conceptual learning gains on the RRMCS test 

3.3.1 Effect size 

If we look into the effect size dG based on the average gain and the pooled standard 

deviation of RRMCS pre- and post-test scores, and also into the corrected effect size dG, dep taking 

into account a possible dependence between the two scores modelled by Pearson’s coefficient of 

correlation r, we find results of table 42. Figure 36 shows the matrix plot of RRMCS post-test 

scores versus pre-test scores leading to an evaluation of Pearson’s r. As can be seen in table 42, 

both Cohen’s effect size dG and the corrected Cohen’s effect size dG, dep are relatively similar.  

Table 42. Effect size for the RRMCS gain, for novice modelling instruction. 

Group N N* RRMCS Gain Effect Size dG RRMCS Gain Corrected Effect Size dG, dep 
Mod 20 0 0.72 0.65 

 

 
Figure 36. Matrix plot of RRMCS post-test scores versus pre-test scores for the Mod group. 
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3.4 Problem-solving skills on the 78%-common final exam 

A one-way analysis of variance (ANOVA) on final exam grades was performed with 𝛼 =

.05. The normality was first assessed with the Anderson-Darling test (Stephens, 1974) for all three 

groups: modelling instruction (Mod), interactive engagement (Act), and regular instruction (Reg). 

Results are presented in figure 37. The absolute skewness of final exam grades varies between 

0.10 and 0.85 whereas their absolute kurtosis varies between 0.02 and 0.72. Furthermore, some p-

values for normality are below 𝛼 = .05, the lowest being .007. The normality test thus leads us to 

reject the null hypothesis as there seems to be a significant difference for some groups. We, 

therefore, proceeded to a test for equal variances, not assuming a normal distribution. This fails to 

reject the null hypothesis, for both multiple comparisons and Levene’s test (Levene, 1960) give p-

values well above 𝛼 = .05 (figure 38). Because of that, the ANOVA on final exam grades was 

performed by assuming equal variances (error rate for comparison set at 5). Results are presented 

in tables 43 and 44, and figures 39 and 40. The p-values are above 𝛼 = .05 and none of the many 

tests performed on the final exam grades leads us to discard the null hypothesis (equal means). 

Therefore, no statistically significant difference appears between groups. 
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Figure 37. Summary descriptive statistics and probability plots of normality for final exam 

grades. 
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Figure 38. Test for equal variances for final exam grades. 

Table 43. Group means (%) on final exam grades. 

Group N Mean StDev 95% CI 
Act 56 67.61 20.37 (62.58, 72.63) 
Mod 20 62.53 15.67 (54.12, 70.94) 
Reg 79 68.26 18.79 (64.03, 72.49) 

Pooled StDev = 19.0281 

 

Table 44. Analysis of variance on final exam grades. 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Group 2 533.4 0.96% 533.4 266.7 0.74 0.480 
Error 152 55034.2 99.04% 55034.2 362.1       
Total 154 55567.6 100.00%             
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Figure 39. Boxplot of final exam grades. 

 
 

 
 

 
 

 
 

Figure 40. Tukey and Fisher pairwise comparisons, Dunnett multiple comparisons with the 

control (Reg), and Hsu multiple comparisons with the best (MCB) for final exam 

grades.  
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4. SECOND RESEARCH QUESTION: STUDENT ATTITUDES ABOUT LEARNING 

PHYSICS 

4.1 CLASS favourable attitude shifts 

4.1.1 Analysis of variance 

A one-way ANOVA on favourable attitude shifts S was performed with 𝛼 = .05. The 

normality was first assessed with the Anderson-Darling test (Stephens, 1974) for all three groups: 

modelling instruction (Mod), interactive engagement (Act), and regular instruction (Reg). Results 

are presented in figure 41. The absolute skewness varies between 0.05 and 0.18 whereas the 

absolute kurtosis varies between 0.17 and 0.38. Furthermore, p-values for normality are all above 

𝛼 = .05, the lowest one being .617. This justifies proceeding to a test for equal variances with the 

assumption of a normal distribution. This test leads to a rejection of the null hypothesis, with a p-

value lower than 𝛼 = .05 (although not by much). Bartlett’s test (Snedecor & Cochran, 1983) 

gives a p-value of .033 (figure 42). Because of that, the ANOVA on favourable attitude shifts has 

been performed without assuming equal variances (error rate for comparison set at 5). Results are 

presented in tables 45 and 46, and figures 43 and 44. The p-value (.778) is above 𝛼 = .05 and the 

Games-Howell pairwise comparisons fail to discard the null hypothesis (equal means). It appears 

that all three methods of teaching have produced sensibly the same effects. 
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Figure 41. Summary descriptive statistics and probability plots of normality for CLASS 

favourable shifts. 
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Figure 42. Test for equal variances for CLASS favourable shifts. 

Table 45. Group means (%) on CLASS favourable shifts. 

Group N Mean StDev 95% CI 
Act 32 -1.37 17.87 (-7.82, 5.07) 
Mod 19 -1.57 12.02 (-7.36, 4.23) 
Reg 58 0.39 12.27 (-2.83, 3.62) 
 

Table 46. Analysis of variance on CLASS favourable shifts (Welch’s test). 

Source DF Num DF Den F-Value P-Value 
Group 2 44.8163 0.25 0.778 
 

 
Figure 43. Boxplot of CLASS favourable shifts. 
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Figure 44. Games-Howell pairwise comparisons for CLASS favourable shifts. 

4.1.2 Effect size 

If we look into the effect size dS based on the average shift and the pooled standard 

deviation of CLASS pre- and post-test favourable scores, and also into the corrected effect size dS, 

dep taking into account a possible dependence between the two scores modelled by Pearson’s 

coefficient of correlation r, we find results of table 47. Figure 45 shows the matrix plots of CLASS 

post-test scores versus pre-test scores leading to an evaluation of Pearson’s r for favourable shifts. 

As can be seen in table 47, both Cohen’s effect size dS and the corrected Cohen’s effect size dS, dep 

are identical within two decimals.  
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Table 47. Effect size for the CLASS favourable shift, for different modes of instruction. 

Group N N* CLASS Favourable Shift  
Effect Size dS 

CLASS Favourable Shift  
Corrected Effect Size dS, dep 

Act 32 29 -0.08 -0.08 
Mod 19 1 -0.10 -0.10 
Reg 58 25 0.02 0.02 

 

 
 

 
 

 
 

 
 

Figure 45. Matrix plots of CLASS favourable post-test scores versus pre-test scores. 
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4.2 CLASS unfavourable attitude shifts 

4.2.1 Analysis of variance 

A one-way ANOVA on unfavourable attitude shifts S was performed with α = .05. The 

normality was first assessed with the Anderson-Darling test (Stephens, 1974) for all three groups: 

modelling instruction (Mod), interactive engagement (Act), and regular instruction (Reg). Results 

are presented in figure 46. The absolute skewness varies between 0.02 and 0.99 whereas the 

absolute kurtosis varies between 0.55 and 2.06. Despite some large numbers, all p-values for 

normality are above 𝛼 = .05 (although the lowest one is close at .06), justifying the assumption of 

a normal distribution to test for equal variances. This test leads to a rejection of the null hypothesis 

with a p-value lower than 𝛼 = .05. Bartlett’s test (Snedecor & Cochran, 1983) gives a p-value 

.000(0195) (figure 47). Because of that, the ANOVA on unfavourable attitude shifts has been 

performed without assuming equal variances (error rate for comparison set at 5). Results are 

presented in tables 48 and 49, and figures 48 and 49. The p-value (0.413) is above 𝛼 = .05 and the 

Games-Howell pairwise comparisons fail to discard the null hypothesis (equal means). It appears 

that all three methods of teaching have produced sensibly the same effects.  
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Figure 46. Summary descriptive statistics and probability plots of normality for CLASS 

unfavourable shifts. 
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Figure 47. Test for equal variances for CLASS unfavourable shifts. 

Table 48. Group means (%) on CLASS unfavourable shifts. 

Group N Mean StDev 95% CI 
Act 32 0.03 16.75 (-6.00, 6.07) 
Mod 19 2.71 7.19 (-0.76, 6.18) 
Reg 58 0.01 9.24 (-2.42, 2.44) 
 

Table 49. Analysis of variance on CLASS unfavourable shifts (Welch’s test). 

Source DF Num DF Den F-Value P-Value 
Group 2 48.3104 0.90 0.413 

 

 
Figure 48. Boxplot of CLASS unfavourable shifts. 
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Figure 49. Games-Howell pairwise comparisons for CLASS unfavourable shifts. 

4.2.2 Effect size 

If we look into the effect size dS based on the average shift and the pooled standard 

deviation of CLASS pre- and post-test unfavourable scores, and also into the corrected effect size 

dS, dep taking into account a possible dependence between the two scores modelled by Pearson’s 

coefficient of correlation r, we find results of table 50. Figure 50 shows the matrix plots of CLASS 

post-test scores versus pre-test scores leading to an evaluation of Pearson’s r for unfavourable 

shifts. As can be seen in table 50, both Cohen’s effect size dS and the corrected Cohen’s effect size 

dS, dep are identical within two decimals.  
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Table 50. Effect size for the CLASS unfavourable shift, for different modes of instruction. 

Group N N* CLASS Unfavourable Shift 
Effect Size dS 

CLASS Unfavourable Shift 
Corrected Effect Size dS, dep 

Act 32 29 0.00 0.00 
Mod 19 1 0.24 0.24 
Reg 58 25 0.00 0.00 

 

 
 

 
 

 
 

 
 

Figure 50. Matrix plots of CLASS unfavourable post-test scores versus pre-test scores. 
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5. THIRD RESEARCH QUESTION: STUDENTS’ PERCEPTION OF MODELLING 

INSTRUCTION 

To answer the third research question about students’ perception of modelling instruction, 

we collected answers to a qualitative and open-ended survey at the end of the semester. Answers 

are reproduced in their integrality in table 51. Positive comments have been identified in green and 

bold, while negative ones have been identified in red. Each letter represents a particular, 

anonymous student that attended the novice modelling class in Mechanics. 

Table 51. Answers to the qualitative survey addressed to Mod-group students. 

Question Comments a 
How did 
you feel 
about the 
modelling 
approach 
used in this 
class? 

(A) Mostly self-taught. Would have preferred some more direct instruction of theory before 
the modelling (i.e. the labs and whiteboards). 

(B) Terrible. 
(C) I understood the concepts of physics much easily, but had difficulty applying them in 

problems. 
(D) Bad approach. 
(E) Interesting approach that I have never seen before. It requires more work than the 

usual way of teaching a course, but I found I retained the information learned better. 
(F) It’s fun. 
(G) Personally, I dislike it. 

What did 
you like 
most about 
the 
modelling 
approach 
used in this 
course? 

(A) It was interactive and generated discussion (when the students decided to participate). 
(B) Nothing. 
(C) The group discussions made the course more dynamic and fun. 
(D) The discussions in class. 
(E) Whiteboarding, discovery through laboratories. 
(F) The many labs. 
(G) The teamwork involved. 

What did 
you not like 
about the 
modelling 
approach 
used in this 
course? 
 

(A) If you did not know the material beforehand, there was also little chance of you learning 
it during the activities where the students had to explain. 

(B) Not my preferred way of being taught Best way: copying notes and having good 
explanation from teacher. 

(C) I don’t like the fact that it relies mostly on experiments rather than theory. 
(D) The white boards because the teacher was not involved enough at the beginning. The 

material of the course should be explained by the teacher first then put into application 
by the students and not the opposite. 
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Question Comments a 
(E) How lab reports were given (I found that while we got a lot freedom, sometimes we 

were at a loss for where to start for proving certain theories), and how grades are 
distributed (too little importance given to lab reports in grading scheme). 

(F) Less notes. 
(G) The fact that a lot of times I felt as if it were the students teaching themselves, which 

does not help learning, as we did not have the bases. 
How do 
you think 
the 
modelling 
approach 
used in this 
course 
impacted 
your 
learning? 

(A) I would have learned better in a more traditional course. Perhaps I'm just not used to 
the modelling approach, but it was a lot more difficult to understand the concepts that 
were taught. 

(B) I learned nothing; I don’t know how to solve challenging mechanics problems. 
(C) I feel like I didn’t learn to apply some of the concepts we saw in this course quite well 

in problems. 
(D) Wrongly. I have the feeling I did not learn that well comparing to my previous years. 

There was a lot of confusion in the class, a lot of noise during the discussions and the 
theory was misunderstood and wrongly interpreted. 

(E) Probably improved my overall learning and retention of information but wasn't as 
useful for exam preparation and getting a good R-score. 

(F) I understand more conceptual physics. 
(G) Negatively, mechanics was the hardest course for me. 

How does 
the 
modelling 
approach 
used in this 
course 
compare 
with other 
science 
courses 
(physics or 
not) you 
attended in 
college or 
high 
school? 
Please do 
not 
mention 
any names. 

(A) This course was definitely more interactive than my other science courses, but I 
performed better in my other classes. My style of learning just doesn't fit the modelling 
approach too well. 

(B) Other ways of teaching are better than the modelling approach. 
(C) This course allowed discussions in class, which other Science courses rarely allow. 

Also, this course relies mostly on experiments, while other Science courses relies mostly 
on theory but with enough experiments. Personally, I prefer the usual way of teaching. 
I feel like I’m not as prepared as other students who do not have the modelling approach 
in physics. However, the modelling approach did help me picture and better represent 
situational problems, which greatly helped me understand and solve problems, though 
some concepts were not clear to me. 

(D) My learning was highly and badly influenced by this type of approach. Therefore, I did 
not progress as well comparing to my previous physics classes and I did not understand 
many concepts viewed this semester. Comparing to my chemistry class where the 
teacher explained all the material and well leaded the class for the final exam, 
modelling approach is a bad experience in which I took place this semester. 

(E) I have only taken 1 physics course prior to this one (Sec V physics), and I like this 
approach much better than the previous approach. The explanations provided in this 
course were much more in depth and precise than in my previous course as well. 

(F) It’s more fun. 
(G) I highly prefer approaches for the other classes where there were precise class notes to 

follow along. 
a Positive comments are in green and bold; negative ones are in red. 
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Hello everybody!  

My name is ______________ and I’m ______________ here at Vanier. 

Mr. Stephan Bourget is currently doing a research project comparing ways of teaching 

Mechanics, to see if one gives better results than the other.  Both are normal, accepted ways to 

teach Mechanics.  

Your participation is important to improve the teaching of physics and Mr. Bourget would 

like your consent to participate.  

Your participation involves allowing your teacher to send the research supervisor Stephen 

Taylor, who does not work at Vanier, your grades of some regular course activities and 

assessments, that is, questionnaires done at the start and the end of the semester, plus the results 

of the common final examination. Mr. Taylor will remove all names and student numbers and 

record only the data of those students who have agreed to participate. That data will then be given 

to the Researcher, Mr. Bourget, without any identifying information, after final grades for the 

course have been submitted at the end of the semester.  In this way, Mr. Bourget will never be able 

to know which students have participated or not, or what the grades of research participants were.  

There is also a short, end-of-semester, anonymous survey, only for Mr. Bourget’s classes. 

This project has been approved by the Vanier Research Ethics Board. Your teacher will 

send out a summary of the results once the research is completed. 

Please read the consent form that I’ll distribute, ask any questions you might have about it, 

and sign it if you agree to participate in this research. Bring back one copy and keep the other one 

for your records. 
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CONSENT FORM 
A COMPARISON BETWEEN LEARNING OUTCOMES OF MODELLING VS. REGULAR INSTRUCTION 
IN A CEGEP PHYSICS CLASS  
 
Researcher(s) 
Stéphan Bourget, M.Ed. candidate (University of Sherbrooke), Physics Department of Vanier College, 418-664-
0785, bourgets@vaniercollege.qc.ca  
For inquiry, please call Monday to Friday between 10:00 AM and 5:00 PM. 
Sponsor(s) 
None.  
 
Description of the Research 
This research is investigating how students learn physics and how to teach physics better. Since you are in or hope 
to be in the CEGEP Science Program, we would like you to participate in this research. More precisely, this research 
seeks to assess the impact of modelling instruction (based on mimicking the process of science through 
experimental inquiries, whiteboarding, and model development) on learning and understanding, compared to other 
modes of instruction, when applied to an introductory physics course (Mechanics) in a Quebec CEGEP. This topic 
is important because students have difficulty mastering and understanding physics concepts. This study proposes 
to answer three questions. First, how will the introduction of modelling instruction impact students’ understanding? 
Second, how will it impact students’ attitudes about science? Third, how will students perceive modelling 
instruction? No special task other than regular learning activities and the completion of a few questionnaires are 
asked from participants. Participants’ past performance in high school or previous college semesters will not be 
reviewed. Future use of the research data is not anticipated. Raw data will be destroyed (deleted or shredded) no 
later than seven (7) years after the end of the research. 
 
Classes receiving the modelling instruction and those who receive the usual ways of teaching this material are being 
asked to participate in this research so that comparisons can be made. 
 
Your participation would consist of the following; 

• For both classes receiving the modelling instruction and those receiving regular instruction, participants 
will allow the researcher access to the results of several regular course activities and assessments 
(diagnostic questionnaires at the start and end of the semester, common final exam).  Class results for 
those activities will be provided by your teacher to the Research Supervisor, Stephen Taylor, who will 
record only the results of those students who have agreed to participate.  They will then be given to the 
Researcher, Stephan Bourget, without any identifying information, after final grades for the course have 
been submitted. 

• For the classes that receive the Modelling Instruction, participants will complete a brief questionnaire at 
the end of the semester.  This questionnaire will be anonymous (no name or identifying information), and 
the Researcher will only have access to them after final grades have been submitted for the semester. 

 
Potential Harms 
Both the classes receiving the modelling instruction and the classes being taught in the ‘usual manner’ will be 
receiving recognized effective instruction techniques. Therefore, there will be no major benefit or disadvantage in 
the learning experience for either group. 
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Potential Benefits 
Participation will help to improve the body of knowledge about physics education and therefore improve the quality 
of teaching. There will be no direct benefit to individual participants.  
 
Confidentiality 
Confidentiality will be respected. No information that discloses your identity will be released or published. Course 
grades will be given to the Research Supervisor (Stephen Taylor), who will then record only the grades of the 
students who have signed this consent form.  The Researcher (Stephan Bourget) will then receive the grades without 
ANY identifying information, after the end of the course, when final grades have been submitted.  The 
questionnaires completed at the end of the semester will also only be available to the Researcher after final grades 
have been submitted. Electronic data will be stored on the researcher’s personal computer, which is password-
protected and not accessible to unauthorized people. Any hard copies of questionnaires will be stored by the 
supervisor. Raw data will be destroyed (deleted or shredded) no later than seven (7) years after the end of the 
research. 
 
Participation 
Participation in research must be voluntary. If you choose not to participate, you will continue to have access to 
quality education. If you choose to participate and later decide to change your mind, you may withdraw your 
consent and your data up until it has been analyzed. In such a case, you would have to contact Krista Melanie Riley, 
pedagogical counsellor – Academic Programs and Innovation, at rileyk@vanier.college or by phone at 514-744-
7500 ext. 8241. If necessary, Krista Riley will contact Stephen G. Taylor to withdraw the consent. Again, you will 
continue to have access to quality education.  
 
Surveys at the end of the semester are anonymous, identified only by the group the participant belongs to. This data 
cannot be withdrawn after it is submitted, because of this anonymity.  
 
This project has been approved by the Vanier Research Ethics Board. A summary of the research results will be 
provided to all teachers whose classes are involved.  Your teacher will then send it to you either by posting it on 
LEA or by MIO. 
 
Statement of Consent 
This research aims at comparing results in learning of modelling vs. regular instruction in a CEGEP physics class. 
I certify that I have read the above information, understand the risks, benefits, responsibilities and conditions of 
participation as outlined in this document, and freely consent to participate in the project with the assurance that 
the data will be kept confidential and in no way affect my academic record at CEGEP. I also consent to my 
teacher providing the relevant course grades to the Research Supervisor, as outlined above. 
 
DATE:  _____________________ 

PRINT YOUR FIRST NAME: ________________________________________ 
(Given Name) 
 
PRINT YOUR LAST NAME: ________________________________________ 
(Family Name) 
 

STUDENT #: _______________________________ 

SIGNATURE: ______________________________________________________ 

TEACHER’S NAME: ______________________________ SECTION #: ___________ 
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OpScan Answer Sheets – Instructions 
Students’ participation is voluntary but strongly encouraged to improve the teaching of 

physics through a representative data analysis. 

1) Do not write anything on the questionnaire.  
2) Mark your answers on the scantron.  
3) Make only one mark per item.  
4) Do not skip any questions.  
5) Avoid guessing. Your answers should reflect what you think.  

Students should be informed of the following rules before they enter any marks on the 
forms: 

1) Use a reasonably sharp HB (or harder) lead pencil. 
2) Do not enter any marks except in the designated areas. 
3) Do not write any notes on the form or cross out any area of the form. 
4) Never make a mark that cannot be erased. 
5) Always erase mistakes completely. 
6) Use a medium amount of pressure when entering a mark. 
7) The mark should fill but not exceed the pre-printed boundaries. 

Also… 
8) Print name but DO NOT blacken corresponding boxes in the student name area. 
9) Print student number but DO NOT blacken corresponding boxes in the student 

number area. 
10) Print class section if you have time. 
11) For test ID, use 001 for the diagnostic on attitudes, 002 for the diagnostic on 

translational mechanics, and 003 for the diagnostic on rotational mechanics. 

Sheets without a name and/or a student number will be rejected as they can’t be tracked to 
the appropriate consent form. 

For answers between 1 and 5, use the corresponding scale A = 1, B = 2, C = 3, D = 4, 
E = 5. 

Time allowed 
• Diagnostic on attitudes: 8-10 min, up to 15 min if time allows. 
• Diagnostic on translational mechanics: 30 min 
• Diagnostic on rotational mechanics: 30 min, no explanations/justification needed for 

answers. 
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1. FORCE CONCEPT INVENTORY (FCI) 

Sample Question: 

 
Source: https://www.physport.org/assessments/assessment.cfm?I=5&A=FCI  

2. ROLLING MOTION CONCEPTUAL SURVEY (RRMCS) 

Sample Questions: 
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Source: https://www.physport.org/assessments/assessment.cfm?I=14&A=RRMCS  

3. COLORADO LEARNING ATTITUDES ABOUT SCIENCE SURVEY (CLASS) 

Sample Questions: 
A significant problem in learning physics is being able to memorize all the information I 

need to know. 

Strongly Disagree   1  2   3   4   5   Strongly Agree 

Knowledge in physics consists of many disconnected topics. 

Strongly Disagree   1  2   3   4   5   Strongly Agree 

Source: https://www.physport.org/assessments/assessment.cfm?A=CLASS&S=1  
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(MODELLING) GROUP 
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Anonymous Qualitative Survey 
 
Description of the Research 
This research seeks to assess the impact of modelling instruction (based on mimicking the 
process of science through experimental inquiries, whiteboarding, and model development) on 
learning and understanding, compared to other modes of instruction, when applied to an 
introductory physics course (Mechanics) in a Quebec CEGEP. This topic is important because 
students have difficulty mastering and understanding physics concepts. This survey should take 
10 to 15 minutes to fill out. 
Potential Harms 
Both the classes receiving the modelling instruction and the classes being taught in the ‘usual 
manner’ will be receiving recognized effective instruction techniques. Therefore, there will be 
no major benefit or disadvantage in the learning experience for either group. 
Potential Benefits 
Participation will help to improve the body of knowledge about physics education and therefore 
improve the quality of teaching. There will be no direct benefit to individual participants. 
Confidentiality 
All survey data will be anonymous. Anonymous data will be accessible by the researcher 
Stephan Bourget after final grades have been submitted for the semester. Electronic data will be 
stored on the researcher’s personal computer, which is password-protected and not accessible to 
unauthorized people. Any hard copies of questionnaires will be stored by the supervisor Stephen 
G. Taylor. Raw data will be destroyed (deleted or shredded) no later than seven (7) years after 
the end of the research. 
Participation 
Participation in research must be voluntary. If you choose not to participate, you will continue 
to have access to quality education. Even if you consented to participate in this project, you are 
not obliged to fill out this survey.  You can hand it in blank, or not answer specific questions. 
You may also fill out the survey if you did not sign a consent to participation earlier in the 
semester. A summary of the research results will be provided to all teachers whose classes are 
involved.  Your teacher will then send it to you either by posting it on LEA or by MIO. 

 
By completing this survey, you acknowledge that you consent to participate in the study as 
described above.  
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Survey 
In this class, I used an approach called 'modelling,' where I invited you to explore phenomena in 
teams, to communicate your thoughts on whiteboards and to construct new models though 
interactions with the whole class. You then applied those constructed models in various situations 
to ultimately challenge them to build better ones capable of explaining a larger spectrum of 
observations. The following survey asks you to reflect on how you felt about that approach. 
 
1. How did you feel about the modelling approach used in this class? 
 
 
 
 
 
 
2. What did you like most about the modelling approach used in this course? 
 
 
 
 
 
 
3. What did you not like about the modelling approach used in this course? 
 
 
 
 
 
 
4. How do you think the modelling approach used in this course impacted your learning? 
 
 
 
 
 
 
5. How does the modelling approach used in this course compare with other science courses 

(physics or not) you attended in college or high school? Please do not mention any names. 
 
 
 



 

APPENDIX G. QUESTIONNAIRE FOR TEACHERS (ASSESSMENT OF TEACHING 

METHOD) 
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Assessment of Teaching Method 
 

(Mechanics NYA, A2018) 
 
Because the teaching method is going to affect the interpretation of results collected from 
diagnostic tests, it is necessary to better distinguish between the ways participating teachers have 
taught. Therefore, I kindly ask you to fill out the questionnaire below and to send the document 
back to me, Stephan Bourget, by email at bourgets@vaniercollege.qc.ca  
 
1. Teacher’s name:  
 
2. Years teaching this course: 
 
3. Technologies used in class: 
 
 
 
 
 
 
 
 
4. Describe your typical methodology to teach Physics NYA this semester: 
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5. Over the following pages, circle (in Word, using the Draw tab) any code that corresponds to a 
typical characteristic of your classes. You can also just check out the codes that apply below. 
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6. Other comments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thanks a lot for your participation and collaboration. Preliminary results will be shared with you 

as soon as they become available, and then you can share with your students through MIO or 
email as you see fit. 
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PHYSICS NYA COURSE OUTLINE 
 

Course Title:  Mechanics     
Course Number: 203-NYA-05   
Section number: 00025/00026/02001 
Semester:  Fall 2018  
Ponderation:  3-2-3    
Pre-requisites:  Sec 5 Physics PH 504 or 203-001 & Sec 5 Math TS/SN 506 or 201-015-50 
Co-requisites:  201-NYA 
Teacher:  Stephan Bourget 
Office:   B406 
Telephone:  N/A 
Office Hours:          Send a MIO for an appointment, or check on my office’s door 
 
COURSE DESCRIPTION  
    This first semester physics course introduces students to the basic concepts and principles of 
Newtonian Mechanics. Topics include vectors, one-dimensional and two-dimensional motion, 
Newton’s laws, work, energy, momentum, laws of conservation, rotation and gravitation. See 
Appendix A for the Objective 00UR and Appendix B for a list of the textbook sections that are 
relevant to the course. Motion, force, work, energy, momentum and laws of conservation are the 
most fundamental concepts in science. They are used not only in later physics courses, NYB and 
NYC, but also in other science disciplines, such as Chemistry and Biology. 
 
TEXTBOOK AND OTHER REQUIRED MATERIAL 
• Required Textbook 

o University Physics, by OpenStax. Free. Will be posted onto LEA. 

o Mechanics, author: Luc Tremblay. Free at http://physique.merici.ca/mechanics.html. 

• Bibliography and additional references 

o Fundamentals of Physics, 10th Ed., authors: Halliday & Resnick, Walker, J., J. John 
Wiley & Sons Publishers, 2010.  It costs about $100.  The same book is used in NYA 
(Mechanics), NYC (Waves and Modern Physics), NYB (Electricity and Magnetism), 
and HTK (Engineering Physics) at Vanier College, in the regular fall and winter 
semesters. 

o Physics for Scientists and Engineers, authors: Serway & Jewett. 

o Physics for Scientists and Engineers, author: Knight. 

o University Physics, authors: Young & Freedman. 

• Other material: Ruler, protractor, scientific calculator. They cost about $20.  
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TEACHING METHODS 
    It is strongly recommended that students come to every class prepared and participate actively 
during each class. Discussion of the material is an important aspect of the course. It is essential 
that students keep up to date with the course material, try to understand each topic as it is 
collaboratively discussed in class, and plan to regularly work on this material outside of class time. 

 
    Physics is an experimental science. Lab work is an important part of this course. The weekly 
lab periods are usually used for lab experiments, problem solving, and/or group work.  Students 
will be expected to prepare detailed reports of selected labs. See Appendix C for the lab report 
style guide. 
 
GRADING SCHEME 
The final mark for the course is based upon the following evaluation scheme: 
 

Course Work 

Laboratory Activities* 

(lowest result discarded) 15 % Ongoing 

WeBWorK assignments* 
(lowest result discarded) 5 % Ongoing 

Class Testing 

Class Tests†: 
1: Kinematics (?) 

2: Forces (?) 
3: Energy & Work, Momentum (?) 

30 % 
TBA 
TBA 
TBA 

Final Summative 
Assessments†† 

Laboratory Exam 10 % TBA 
Final Exam 40 % Exam Period 

 
* Refer to Omnivox for the dates and weighting of Lab Activities and online assignments. 
† If the final exam grade is higher than the grade of one or more tests, the lowest test grade will be replaced 
by the final exam grade. One of the 3 class tests will be a group exam; your best preparation is to participate 
actively in the learning activities and the modelling cycles. 
†† If the average obtained in the category Final examination is not at least 60, the final grade will not exceed 
60. 
 

Check LEA for due dates. Contents of the class tests will be confirmed in class. The final exam 
is comprehensive and compulsory. The final exam grade can replace the lowest test grade if 
improvement is shown.  
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FORMULA SHEET USAGE 
A formula sheet is allowed in the final exam. The teacher will either distribute printed formula 

sheets and/or allow students to prepare their own memory aid. In the latter case (unless otherwise 
stated in class), the memory aid must fit on a 3”x5” index card.  Both sides of the card may be 
used.  Students can write only equations, no words, derivation, graphs or diagrams, etc. 

 
At teacher’s discretion, a formula sheet may be allowed in class tests. In that case, the teacher 

will either distribute printed formula sheets and/or allow students to prepare their own memory 
aid. In the latter case (unless otherwise stated in class), the memory aid must fit on a 3”x5” index 
card.  Only one side of the card may be used; for final exams, both sides are allowed.  Students 
can write only equations, no words, derivation, graphs or diagrams, etc.  The teacher will announce 
the decision whether to provide printed formula sheets or allow students to make their own, at least 
two weeks prior to the first class test. 
 
ATTENDANCE 

Students are strongly recommended to attend all lectures.  Attendance in labs is compulsory and 
a mark of zero will be given for missed lab work. Students are responsible for obtaining all material 
covered, including handouts, and announcements made during their absence. Except for absences 
for religious holy days (Vanier policy 7210-20), there will be no make-up tests, exams, or labs 
without a well-documented medical note that complies with college policy. 
 
LATE ASSIGNMENTS/MISSED TESTS 

The deadlines for assignments and laboratory activities will be clearly communicated in class.  
Any work that is submitted on the due day but after the specified time will receive a penalty of 5% 
and later submissions will be subject to a penalty of 10% of the total available marks per day (up 
to 5 days).  Work that submitted more than 5 days late, or not at all, will receive a grade of zero. 
 

All students are expected to complete all assessment activities as scheduled.  If a student must 
miss a test, for a valid reason, the weight of the missed test will be added to the weight of the final 
exam.   
 
RESOURCE CENTRES 

• Physics Study Area: B400, physics teachers may be available.  
• Math & Science Centre: F540, student coaches may be available.  
• Learning Centre: B205. 
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COLLEGE POLICIES 
    The following college policies will be strictly followed. Consult The Vanier Student Guide, the 
Vanier College Catalogue, the Student Handbook and your teacher for more information. 

 
General Academic Policies:  
It is the student's responsibility to be familiar with and adhere to the Vanier College Academic 
Policies. These policies can be found online on the Vanier College website. Your attention is 
drawn in particular to the following policies. A brief summary of each is included.  
 
Student Academic Complaints (Policy number 7210-8): The Vanier College Student 
Academic Complaints Policy and procedures puts an emphasis on mediation as the primary 
means to resolve complaints in the academic area. If you have a problem with a teacher and 
have been unable to resolve it by talking with him or her, you may wish to enlist the help of the 
Faculty Mediation Committee. The committee member names and contact information are 
available in Student Services or through the office of the Faculty Dean.  
 
Cheating and Plagiarism (Policy number 7210-31): Any form of cheating or plagiarism will 
result in a grade of zero on the test or assignment and a letter from the teacher will be placed in 
your file. A repeated offence may lead to even more serious consequences. Please consult the 
Vanier Student Writing Guide, the Vanier College Catalogue, the Student Handbook, and your 
teacher for more information.  
 
Student Misconduct in the Classroom (Policy number 7210-19): This policy provides 
guidelines for handling cases of student misbehaviour in the classroom and other instructional 
settings. Such cases may include conduct that is abusive to the teacher and/or other students, or 
disruptive to the teaching/learning process. This policy does not limit the teacher’s or the 
College’s right to take immediate action in cases of imminent danger to persons or property.  
 
Zero Tolerance (Policy number 7110-2): The following disruptive behaviours will not be 
tolerated in any degree on campus: Unauthorized Use of Alcohol/Illegal Drugs; Violence 
against Persons or Property; Possession of Weapons; Verbal or Written Abuse or Intimidation; 
Theft or Gambling.  
 
Student Absences for Religious Holy Days (Policy number 7210-20): Students whose 
religious obligations require them to be absent from the College on a holy day not formally 
recognized in the College calendar must inform their teachers, in writing, during the first week 
of classes, of the particular date(s) and times of the religious holy days on which they must be 
absent. Absences approved in this manner are considered to be excused absences. Students are 
responsible for material covered in the classes and labs they miss. 
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Appendix A: Objective 00UR 

OBJECTIVE 00UR  

MECHANICS 

GENERAL FRAMEWORK 

This course in Mechanics is designed as a first college-level physics course for students with adequate 
secondary school backgrounds.  Students are expected to be concurrently following the first course in 
Calculus (201-NYA-05). 

The attainment of the objective requires an understanding of the laws and major principles of conservation 
regulating the motion of bodies. 

The learning situations should facilitate the development of the scientific spirit as well as the ability to solve 
problems and conduct laboratory experiments.  The students will be presented with technical applications 
drawn from daily life and technology.  They are also encouraged to use differential calculus in accordance 
with their previous academic profile.  It is suggested that the major stages in the development of mechanics 
be situated within their historical context. 

Students will be required to use a calculator, a computer and other appropriate instruments.  A procedure 
will be outlined for the experimental component. 

 
SPECIFIC INDICATIONS (CONTENT) 

Scalar and vector quantities:  units and dimensions. 
Kinematics of the various aspects of rotation and translation:  position, displacement, linear and angular 
velocity and acceleration. 
Force, dynamics of translation and rotation. 
Energy and mechanical work. 
Principle of conservation of energy and momentum. 
 
PERFORMANCE CRITERIA 

Appropriate use of concepts, laws and principles. 
Adequate representation of situations in physics. 
Use of appropriate terminology. 
Graphic component and mathematical expressions adapted to the nature of the problem. 
Justification of steps in the analysis of situations. 
Rigorous application of Newton’s laws and the principles of conservation. 
Critical analysis of results. 
Interpretation of the limits of the models. 
Meticulous experimentation. 
Laboratory report in line with established standards. 

Field of Studies:  Science 
Discipline:  Physics 
Course Code:  203-NYA-05 
Weighting:  3-2-3 
Number of Credits: 2⅔ 
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COMPETENCY: TO ANALYZE VARIOUS SITUATIONS AND PHENOMENA IN PHYSICS USING THE BASIC PRINCIPLES 
OF CLASSICAL MECHANICS. 

Specific Elements of the Competency Standard of Performance:  The student must be able to: 
 
1. To describe the translation of 

bodies in one dimension.
  

 
1.1 define and use the concepts of position, displacement, and average velocity over a 

time interval 
1.2 understand and use the concept of instantaneous velocity as the instantaneous rate of 

change of position 
1.3 understand and use the concept of average acceleration over a time interval 
1.4 understand and use the concept of instantaneous acceleration as the instantaneous 

rate of change of velocity 
1.5 recognize the limitations of the equations for constant acceleration 
1.6 know and use the equations for constant acceleration, in simple applications 

including freely falling bodies 
1.7 use and interpret graphs to understand relationships among variables, including 

graphs of position and velocity versus time. 
 

 
2. To describe the translation of 

bodies in two dimensions. 

 
2.1 distinguish between scalars and vectors. 
2.2 sketch the addition of vectors. 
2.3 find the components of a vector. 
2.4 add vectors by components. 
2.5 find the magnitude and direction of a vector from its components. 
2.6 express a vector in unit vector notation. 
2.7 understand and use the concepts of position, displacement, average velocity, 

instantaneous velocity, average acceleration and instantaneous acceleration, 
in 2 dimensions 

2.8 recognize and use the vector nature of acceleration, as being involved in any 
change of speed or direction or both 

2.9 understand the concept of relative velocity (Galilean relativity) 
2.10 understand projectile motion in terms of separate horizontal and vertical 

components. 
2.11 calculate the position and velocity of a projectile at any time given its initial velocity 

and position. 
2.12 understand how a body in uniform circular motion accelerates because the change in 

direction of its velocity. 
2.13 know and use the relation between acceleration, speed and radius of motion. 
 

 
3. To describe the rotation of 

bodies. 

 
3.1 define angular position, displacement, velocity and acceleration by analogy with the 

corresponding linear quantities. 
3.2 know the relations between linear and angular quantities. 
3.3 know and use the equations for rotational kinematics with constant angular 

acceleration. 
 

 
4. To apply the concepts and laws 

of dynamics to analysis of the 
translation of bodies. 

 
4.1 define inertia and distinguish between mass and weight. 
4.2 know the common contact forces (normal, tension, friction) and recognize situations 

where they appear. 
4.3 draw labelled isolation diagrams for typical situations. 
4.4 calculate the unknown forces in the transitional equilibrium of a point object. 
4.5 state Newton’s Laws and explain qualitatively how they apply in common situations. 
4.6 apply Newton’s Laws quantitatively to situations including friction, apparent weight 

and uniform circular motion. 
4.7 state Newton’s Law of Universal Gravitation and apply it to point and spherical 

masses interacting with each other and in circular orbit around a fixed mass. 
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COMPETENCY: TO ANALYZE VARIOUS SITUATIONS AND PHENOMENA IN PHYSICS USING THE BASIC PRINCIPLES 
OF CLASSICAL MECHANICS. 

Specific Elements of the Competency Standard of Performance:  The student must be able to: 
 
5. To measure the amount of work 

and energy involved in simple 
situations. 

 
5.1 define and calculate the scalar product of two vectors. 
5.2 define work as a scalar product and calculate the work done by a constant force and 

by a force proportional to the displacement (elastic force). 
5.3 define and calculate the kinetic energy of an object. 
5.4 state the work-energy theorem. 
5.5 distinguish between conservative and non-conservative forces. 
5.6 define and calculate the potential energy of simple systems (gravitational and 

elastic). 
5.7 define and calculate the mechanical energy of simple systems. 
5.8 know the definition of power. 
 

 
6. To apply the principles of 

conservation in mechanics. 

 
6.1 understand the principle of conservation of mechanical energy in friction-free 

systems. 
6.2 recognize forms of non-mechanical energy (heat, electrical, chemical, etc.). 
6.3 understand and apply general energy conservation to simple systems. 
6.4 define and calculate linear momentum as a vector quantity. 
6.5 understand the connection between conservation of linear momentum and Newton’s 

Third Law. 
6.6 apply momentum conservation to collisions and explosions in one and two 

dimensions. 
6.7 distinguish between elastic collisions, in which both momentum and kinetic energy 

are conserved, and inelastic collisions. 
 

 
7. To apply the concepts and laws 

of dynamics and angular 
momentum conservation to the 
analysis of the rotation of 
bodies. 

 
7.1 define torque as r F sinθ and calculate it for simple planar geometries. 
7.2 use the concept of symmetry to find the centre of gravity of simple objects. 
7.3 calculate the unknown forces or distances for systems in rotational equilibrium. 
7.4 define the moment of inertia for a rigid body and calculate it for point masses and for 

a ring. 
7.5 know and use the definition of rotational kinetic energy. 
7.6 understand Newton’s Second Law for rotation by analogy with the corresponding 

translational case. 
7.7 apply Nll to the rotation of a rigid body about a fixed axis. 
7.8 define angular momentum of a rigid body about a fixed axis for a given moment of 

inertia and angular velocity. 
7.9 understand that the conservation of angular momentum applies to a torque-free 

system. 
7.10 apply angular momentum conservation to rotation about a fixed axis. 
 

 
8. To verify, experimentally, a 

number of laws and principles in 
mechanics. 

 
8.1 perform and submit reports on a number of lab experiments, for example, in 

kinematics, vectors, dynamics, energy conservation, and momentum conservation. 
8.2 know how to analyze and present experimental data and draw appropriate 

conclusions. 
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Appendix B:  Relevant sections in the textbook, University Physics by OpenStax  
 
The actual order of topics covered may depart from the possible sequence shown for pedagogical 
reasons related to the mode of instruction adopted. 
 

Specific elements of competency Topics Sections in 
textbook 

Vectors 
(Estimated time: 1 week) 

Vectors 
 

2.1 – 2.4 
 

Motions 
(Estimated time: 3 weeks) 
 

1-D kinematics 
2-D kinematics 
Rotational kinematics 

3.1 – 3.6 
4.1 – 4.5 
10.1 – 10.3 

Newton’s Laws and Applications 
Including Gravitation 
(Estimated time: 3.5 weeks) 

Newton’s laws of motion 
Applications of Newton’s laws 
Gravitation 

5.1 – 5.7  
6.1 – 6.3 
13.1, 13.2 

Work, Energy, Principles of 
Conservation 
(Estimated time: 3.5 weeks) 
 

Work and kinetic energy  
Potential energy 
Energy conservation 
Momentum conservation, impulse 

7.1 – 7.4  
8.1 
8.2, 8.3 
9.1 – 9.5 

Rotational Dynamics and Torque 
(Estimated time: 2 weeks) 

Moment of inertia, rotational 
kinetic energy, torque 
Rotational Equilibrium 

10.4 – 10.7 
12.1 – 12.2 

Angular momentum 
(Estimated time 1.5 week) 

Angular momentum 11.2, 11.3 
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Relevant sections in the textbook, Fundamentals of Physics, 10th ed., by Halliday, Resnick, 
and Walker  

The following is a list of topics that will be studied in order to meet the terminal objectives of the 
course competencies.  For each of the topic headings in the syllabus, references are given for the 
appropriate sections from the course textbook.  The content for this course is divided into four 
Units that build upon each other sequentially.  The Final Exam will cover material from all four 
Units and will be given during the Exam Period.  The actual order of topics covered may depart 
from the possible sequence shown for pedagogical reasons related to the mode of instruction 
adopted. 

 

Approximate 
Timelines Unit Topics  

Chapter References 
(WHR 10th ed.) 
(Tremblay 2018) 

UNIT I 
Weeks (1-5) 

Introduction to Physics, Mechanics and 
Measurement [WHR 1 all sections] 

1-Dimensional Kinematics   [WHR 2 all sections] 
[T 1 all sections] 

Introduction to Vector Quantities   [WHR 3 all sections] 
[T 2.1] 

2-Dimensional (vector) kinematics   [WHR 4 all sections] 
[T 2 all sections] 

UNIT II 
Weeks (5-8) 

Concept and Definition of Forces & 
Newton’s laws applied to linear 
translation  

[WHR 5 all sections] 
[T 3.1, 3.4, 3.5, 3.6; 4.2, 4.3, 
4.4, 4.5; 5.3; 7.1, 7.2, 7.4, 
7.5] 

Friction [WHR 6.1] 
[T 5.1] 

Universal Gravitation [WHR 13.1 – 13.3] 
[T 4.1; 6.5] 

Newton’s laws Applied to Circular 
Motion 

[WHR 6.3] 
[T 2.3, 2.4; 6.1, 6.2, 6.3, 6.4; 
7.3] 
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UNIT III 
Weeks (8-10) 

Work and Energy 
[WHR 7.1 – 7.4, 3.3] 
[T 8.1 – 8.2] 

Conservation of Energy   [WHR 8 all sections] 
[T 9.1 – 9.6] 

Power / Efficiency [WHR 7.6] 
[T 8.3] 

Collisions and Linear Momentum [WHR 9.2 – 9.8] 
[T 10.1 – 10.8] 

UNIT IV 
Weeks (11-15) 

Centre of Mass [WHR 9.1] 
[T 11] 

Rotational Kinematics (fixed axis)   [WHR 10.1 – 10.3, 11.1] 
[T 12.1] 

Rotational Kinetic Energy & Moment of 
Inertia   

[WHR 10.4 – 10.5, 10.8] 
[T 12.2 – 12.4, 12.7] 

Torque [WHR 10.6, 3.3, 11.2 - 11.4] 
[T 12.5] 

Rotational Dynamics & Static 
Equilibrium 

[WHR 10.7, 12.1, 12.2] 
[T 12.6; 13 all sections] 

Angular Momentum   [WHR 11.5 – 11.8]          
[T 12.8] 
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Appendix C:  Lab report style guide 
 
Refer yourself to documents posted on LEA. 
 
 
 




