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Abstract

Success in mathematics is the gateway to many careers in the sciences, and
increasingly in other fields such as economics and commerce. Ubiquitous high failure
rates in Galculus courses prevent capable students from pursuing their career goals.
Hence educators seek improvements in instructional design that will help more students
to succeed. The use of technology in mathematics education is often seen as a
potential source of improvement in student learning of mathematics. We studied two
cases of integration of technology in Calculus | courses: WebCal and Maple. In both
studies we used a 2 x 2 factorial design to assess the impact of both collaborative
learning and the use of technology on student achievement and changes in student
motivation to study mathematics. In the course of this research we developed measures
for assessing student knowledge of Calculus I: arithmetic/algebraic skills; use of
symbolic language; understanding of algorithms; correct answer; understanding of
graphs; and conceptual understanding. There were 384 studenis and six instructors
participating in this study. In the WebCal study we determined that usage of WebCal
had a positive impact on understanding of algorithms and graphs. There were no
significant differences found in the Maple study. Interestingly, WebCal students in
lecture sections outperformed WebCal students in collaborative sections on
arithmetic/algebraic skills and on use of symbolic language. On the other hand, only
collaborative learning had a positive impact on students’ ability to solve problems
without making errors. There were no significant differences in changes of student
motivation to study mathematics found in the WebCal study. In contrast, student
motivation significantly decreased in the Maple study. In both studies, we found that
students using the technology reported that they studied longer hours in comparison to
their counterparts in classes where technology was not used.
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introduction

In the twenty-first century computer technology will be ubiquitous, and
self-directed learning will be the keystone of both personal and marketplace success,
thus it is imperative that we prepare our students accordingly {Sauer, 1990). In
recognition of this need the new CEGEP science program requires integration of
computer technology into the mathematics and science curriculum. Because success in
mathematics is the gateway to many careers in the sciences, and increasingly in other
fields such as economics and commerce, high failure rates in mathematics at Vanier
and across the Reseau (and also in the U.S.A., Ferrini-Mundy & Lauten, 1994) are
potentially disastrous. Thus, every one concerned hopes that the new program will not
only be effective in bringing about the integration of computer technology, but also at
the same time will improve the overall success of mathematics instruction. Improved
achievement in mathematics would help reduce the shortage of science graduates in
Quebec and in Canada (Baillargecn, Demers, Ducharme, Foucault, Lavigne,
Lespérance, Lavallée, Ristic, Sylvain, Vigneault, 2001, Nankivell, 1998) relative to other
developed countries, and thereby decrease the disadvantage Quebec and Canada
have in comparison to their major trade competitors.

We note that efforts to improve student conceptual understanding are being
actively pursued within the elementary and secondary mathematics education sectors in
Quebec. These efforts involve implementation of a constructivist educational philosophy
and often a collaborative learning' (CL) approach as well. Furthermore, the curriculum
of mathematics courses in Secondary IV and V demands the integration of technology
in terms of the active use of graphing calculators. A cohort of 2242 students graduating
in the summer of 2003 and enrolling in four public anglophone CEGEPs was asked to fill
in a questionnaire that they never used the graphing calculators. In addition, 970 (46%
of those wh regarding their experience in using calculators (Rosenfield, 2004). Of the
2108 students who responded to the items pertaining to use of Caleulators, 527 (25% of
all) students reported o had used graphing calculators) reported that they had not been
taught how to use graphing calculators by their teachers. These resulits indicate that the
integration of technology may not be proceeding as it was envisaged by reformers
within the MEQ. On the other hand, a review (Barton, S., 2000) of fifty two studies
concerning the effect of the integration of graphing calculators into course work
determined that more than two-thirds of the siudies reported greater achievement in the
classes using either graphing calculators or computer algebra systems (CAS) over the
classes that did not involve the use of technology. Moreover, 75% of studies reported
better outcomes on measures of conceptual understanding in classes using either
graphing calculators or CAS over classes that did not use either technology. It is
important to note that although these results are promising, many studies indicate that
there was no significant difference. This suggests that while the use of technology can

"The terms “cooperative learning” and “collaborative learning” are used synonymously in this
report.
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have a positive effect, perhaps another factor, such as how technology is used, may be
equally important.

CEGEP mathematics instructors have not undertaken to reform Calculus
teaching in a manner similar to the changes taking place in Secondary School
Mathematics. Un fortunately, students taking standard Calculus courses have been
shown not to achieve expert-like knowledge (Roddick,1995). Thus, in developing
WebCal materials our goal was to design a course from which students would graduate
having acquired expert-like knowledge of the central concepts of Calculus, and that this
knowledge would be fransferable to further studies in mathematics, and where
apprapriaie to other disciplines as well (Fisher, 1996). However, there was and still is
insufficient evidence that integrating computer technology, collaborative learning, and a
constructivist approach leads to improved achievement and/or conceptual
understanding of mathematics at the CEGEP level. During the 1899-2000 and
2000-2001academic years, while still developing and refining our materials, we carried
out observations in one WebCal-based course implementation. This qualitative study
(Dedic, H., Rosenfield, S., Cooper, M. & Fuchs, M., 2001) suggested that while some
students did demonstrate the sound conceptual understanding of concepts of Calculus
that we hoped for, the effectiveness of this instructional setting seemed highly
dependent on the characteristics of the student. In this context, effectiveness represenis
both an understanding of Calculus concepts and student motivation to study
mathematics. Thus, the issue became one of how we could gather quantitative
evidence examining the integration of computer technology into the teaching/learning of
Calculus. Another central objective was to differentiate between the impact of group
work and the integration of technology on both the promotion of conceptual
understanding and student motivation to study mathematics.

Computer technology can be integrated into the teaching of mathematics in a
number of ways. For example, many instructors provide their lecture notes online. The
focus of such efforts is to facilitate access to information. Use of a course-management
package, such as Blackboard or WebCT, not only facilitaies access to course materials,
but also promotes student-student and/or student-instructor online conversations. The
focus of such efforts is thus to provide access to both a source of knowledge, and also
to provide help when needed. An entirely different mode of integration of computer
technology involves the use of computer algebra systems (CAS) such as Maple or
Mathematica. The focus of these efforis is often to teach students how 1o use the tools
that mathematicians and scientists currently use in their work. Mathematicians use CAS
systems because they remove the tedium of routine computation. Instructors use these
systems to speed up the computations, and, therefore, allow students {o explore
mathematical concepts. Lastly, sometimes the integration of computer technology in
mathematics involves the use of “drill and practice” packages (e.g., WebWorks}. The
focus of such efforts is o provide students with instant feedback regarding their work.

Prompted by the desire to provide quaniitative evidence of the effectiveness of
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the integration of computer technology, and by the variety of possible uses of
technology in mathematics instruction, we decided to investigate the effectiveness of
two different modes of such integration: a course that includes access to web-based
course materials and includes the use of a CAS package (WebCal); and, a course that
combines the use of a CAS package with a course-work approach that focuses on
teaching how to use the CAS in exploring and “doing mathematics”. We also decided to
examine the impact of instantaneous feedback on student learning in a course with
web-based materials.

This final report begins below with the theoretical framework that guided the
investigation. Next there is a general description of the methodology used, followed by a
detailed description of the protocol used, and then the results obtained in two
experiments: the effectiveness of a web-based course (face-to-face delivery, not
distance education), WebCal, relative to a standard instructional design; the
effectiveness of a Maple-based approach relative to a standard instructional design.
Conclusions and recommendations fiowing from this research then sum up this report.
Since we have already published the results of the study concerning the effectiveness
of simple vs multiple-try instantaneous feedback in a web-based course, WebCal, we
have appended those materials intact below the conclusions concerning the two other
studies.
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Theoretical Framework

There are four theoretical perspectives that guide this research: the Calculus
Reform Movement (Hodgson, 1987); the tenets of a constructivist paradigm, as well as
the work of several iearning theorists (Piaget, 1954, Ausubel 1963, Posner, Strike,
Hewson, & Gerizog,1982, Entwistle & Tait, 1996); the theory of the impact of motivation
and self-regulation on student learning ( Pintrich, Marx & Boyle, 1993, Zimmermann,
1990); and, the theory of collaborative learning. In addition, this research was guided by
our earlier qualitative study of student perceptions while taking a Calculus course with
web-based materials (Dedic et al., 2001).

Reform Calculus:

WebCal, our web-based course, complies with the “Rule of Four” of Reform
Calculus whereby the concepts of Calculus are presented using a balance of verbal,
graphical, numerical and algebraic perspectives. It has been shown that expert
mathematicians move fluidly between these four perspectives in solving problems
(Hodgson, 1987). Including the “Rule of Four” approach in Calculus instruction may lead
to studenis developing a deeper, more expert-like understanding of the central concepts
of Calculus and higher rates of student success (Ferrini-Mundy et. al., 1994). In
addition, the balance of analytical, graphical, numerical and verbal perspectives of
mathematical offers more entry points to understanding for students with different
learning styles (Armstrong & Hendrix, 1999). Unfortunately, for many students the
details involved in shifting perspectives - shifting from an analytical to a graphical or
numerical representation of a function involves generating a table of numerical values,
using the table to generate a graph - are tasks sufficiently complex that, even if they
choose to do these tasks, many students do not have the cognitive capacity to then
simultaneously engage in conceptualization. CAS systems effortlessly compute tables
of values and generate an associated graph when the student merely types in the
formula. This permits students to focus their attention on numerical trends in the table,
or on features of graphs as related to features in the formulae. Thus, the hope is that
using computers in this fashion might enable students to grasp difficult concepts of
Calculus because it allows them to focus on conceptualization, instead of on the
mechanics involved in generating numerical, graphical and symbolic perspectives
(Stephens & Konvalina, 1999).

Learning theories and constructivism:

Learning theorists distinguish two different processes by which learners acquire
new concepts, each of which results in a different knowledge structure. Certain
cognitive processes which result in expert-like knowledge have been labelled
meaningful learning (Ausubel, 1963), deep processing (Entwisile. et. al. 1996) or the
process of conceptual change (Posner. et. al. 1982). On the other hand, processes
which result in a knowledge structure that leaves the learner ill-equipped to use it in
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problem solving or to transfer it to different fields have been called rote learning
(Ausubel, 1963) or surface processing (Entwistle. et. al. 1996). The process of
conceptual change (our choice of label) is accomplished by learners when cognitively
elaborating new information by relating it to prior knowledge in various ways: relating
different perspectives of concepts; engaging in the process of reconciliation of
previously held views with data gained through their own observation and
experimentation; formulating and testing hypotheses; questioning and formulating
conclusions, etc. However, rote learning {our choice of label) is accomplished by
memorizing verbatim definitions of new concepts and memorizing algorithms for solving
problems rather than by elaborating finks between information and concepts (Mazur,
19986).

Theorists (Posner. et. al. 1982) use the term "conceptual change” to describe a
learning process that promotes students acquiring a conceptual understanding that
allows them to effectively use the concept in novel problem solving {(Posner. et. al.
1982); Posner & Strike, 1992; Chinn and Brewer, 1993; Dykstra, Boyle & Monarch,
1992; Redish, 1994). According to these researchers instructional designs rooted in this
theory share four common characteristics: creating dissatisfaction in students with their
prior understanding; providing a convincing demonstration that new concepts are
understandable; showing that the new concept is plausibie in view of student
background knowledge; and, showing that the new concept is more useful in problem
solving than the old concept.

Proponents of the constructivist paradigm believe that a learner's active
engagement with material favours the process of conceptual change, while a learner's
passive listening to lectures providing new information tends to lead to rote learning. It is
important to note that just the use of computers in the classroom in itself enhances the
interaction of students with materials, an effect which by itself has been shown to
‘promote achievement of students (Mayer, 1997). However, Osta (1994) points out that
there are gender based differences in the reaction of students to learning situations
involving computers.

Papert, (1980, 1992) showed that children construct a new mental model
(elsewhere called undergoing conceptual change or building conceptual understanding)
by actively experiencing sufficient examples. His excitement in both books arises from
his studies wherein computers have been used to construct “Microworlds” that allow
each child to rapidly generate, what is for them, sufficient experiences 10 enable
conceptual change. Papert (1992) noted that computer generated experiences allow
children to become abstract thinkers at a very early age. Similarly, in mathematics each
student needs to experience a sufficient number of instances of a given phenomenon
before hypotheses can be formulated, tested and conclusions drawn. For example,
understanding the connection between the formula for a given function and the shape of
its graph requires exposure, in a systematic manner, to many formulae and their
corresponding graphs. In a standard lecture-based course, the task of generating
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repeated examples is either neglected completely because it is tiresome and time
consuming for the teacher, or left to each student as a paper and pencil task. Most
students, faced with the tiresome effort of performing many such tasks on their own, fail
to complete sufficient examples to allow them to grasp the underlying concept. instead,
they choose rote memorization of superficial patterns as the most energy-efiicient
learning method. Use of CAS systems allows students to rapidly generaie as many
instances of a given phenomenon as they need to see the pattern, and hence to
construct their understanding. Thus, the use of computers may enable many students to .
learn through experimenting, and then to develop a conceptual understanding otherwise
achieved only by the exceptional few.

An essential part of learning is the development by each student of an
understanding of the cycle often called the scientific method (observations, leading to a
belief about the structure governing a particular phenomenon, testing of that belief
through additional observations, and either formation of new beliefs or further
generalization of the old beliefs). Computer-mediated instruction in science and
mathematics provide learners with visual feedback enabling students to travel through
this cycle of discovery (Papert, 1980). When working with computers students may
encounter dissatisfaction with previously held views because their predictions are
immediately shown to be invalid. By removing much tedious mechanical work, the
technology allows a large number of instances to be generated within a short time
period, and thus can rapidly lead students to become dissatisfied with their previously
held views. This is one of the four cognitive conditions necessary for conceptual change
to oceur (Posner et. al., 1982). Similarly, technology allows students to experiment and
to rapidly generate many instances of the application of a new concept. Such
experiments provide evidence of the fruitfulness of the new concept in problem salving.
In addition, the new concept becomes an intelligible and plausible alternative to
previously heid views. Consequently, the remaining three cognitive conditions
prerequisite o conceptual change can also be satisfied when a student is exposed to
computer-mediated instruction.

Motivation.

Pintrich, Marx and Boyie (1993) introduced the concept of hot conceptual
change. They proposed that student conceptual change does not depend solely on the
four cognitive conditions proposed by Posner et al. (1882), but also depends on student
characteristics and beliefs (e.g., prior knowledge, motivation, epistemological beliefs as
applied to the discipline, locus of control, self-regulation). Most, if not all, students
learning Calculus need to expend a substantial effort. Motivation to engage in this effort
comes not from objective reality but from our subjective interpretation of reality.
Expectancy-Value Theory (Tolman, 1932; Rotter, 1966; Rotter, Chance & Phares,1972)
seems to offer a good perspective on motivation in this context. For example, students
who do not value knowledge of mathematics because it does not seem to be important
in their lives, or because they have a negative affect towards it (Lafortune, 1992), are
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unlikely to truly engage in the learning process. Consequently, they are unlikely to
achieve conceptual understanding. Furthermore, if students have a low subjective
expectation concerning their probability of success, then they are unlikely expend the
effort that is necessary to achieve conceptual understanding. Thus, students who have
a low self-efficacy in mathematics (Bandura, 1986) may not engage in the learning
process or may not persist in the face of adversity when learning difficult to grasp
concepts.

Another motivational variable is often implicated in a student’s efforts to achieve
conceptual change. More effort is expended by mastery oriented students than by
performance oriented students (Dweck & Eiliot, 1988). Furthermore, students’ beliefs
about knowledge have been shown to impact on learning. Students who believe that
knowledge is innate or acquired quickly are unlikely to patiently struggle to understand
difficult concepts (Schommer, 1990).

Pintrich et al. (1993) point out that characteristics of an instructional setting (e.g.
task and evaluation structures, course management, interactive engagement, feedback)
influence whether conceptual change occurs. For example, assessments that are
formative in nature, as opposed to summative, encourage students to continue to
develop meaningful understanding (Saunders,1992). Classroom environments that
foster mastery goals are also likely to impact positively on student conceptual change
(Ames, 1992). it has been shown that feedback effectively promotes meaningful
learning, given that the instructional setting provides both the tasks from which they can
draw data and incorporates feedback structures that allow students to gauge their
performance (Lou, Dedic & Rosenfield, 2002).

Collaborative learning

Many researchers {Abrami et al., 1995; Bosse & Nandakumar, 1998; Brophy,
1995: Scardamalia, Bereiter, Brett, Burtis, Calhoun & Lea, 1992; Lafortune, 1998 and
Lafortune et. al., 1994)) demonstrated that collaborative learning instructional settings
promote student achievement and conceptual change by requiring students to engage
in conversations concerning the subject matter. The construction of meaning is also
enhanced by the need to present a well elaborated idea to the group (Harasim, 1987),
to defend ideas against criticism, and in turn, to criticize the ideas of others. In addition,
students become actively involved (Hake, 1998) and therefore, their individual
conceptual understanding (or misunderstanding) is debated and clarified by their peers.
Consequently, students in these collaborative environments are more likely 1o take
ownership of their ideas and make a conceptual change.

Qualitative study of web-bhased Calculus course

A study funded by SSHRC was conducted in the Fall semester of 1999 with 44
students enrolied in a web-based Calculus course (Dedic, et al., 2002). Classes were
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held in computer labs. Initially, each student had a computer and, although they were
encouraged to work in pairs, such behaviour was not evident. In the fifth week the class
moved to the then newly-completed electronic classroom, where pairs of students
shared a single computer, and collaborative behaviour began to spread. The teacher
provided assistance to groups of students as requested, or lectured to the whole class
when many students seemed to be asking the same question. Since this study was
exploratory in its objectives, unstructured weekly interviews with eight students were
used to gather data on the satisfaction of students with the course, as well as on their
subjective evaluation of their learning in the new instructional setting. In addition, more
specifically, the interviewer focussed on the perception of students regarding the impact
of interactive exercises on their understanding of the concepts of Calculus.

We gathered anecdotal data from students in our web-based course that
indicated that they performed well on conceptual questions, on questions which require
students to use all four perspectives of mathematical concepts flexibly, as well as on
questions which require students o demonstrate the ability to use problem-solving
algorithms. We also discovered that students mastered some concepts faster than ina
regular class, e.g., they learned the concept and computational techniques of limits in
two weeks, instead of the usual three to four weeks. We hypothesized that this is due to
these students having formulated a rich conceptual structure in this instructional setting.
Thus, it became necessary to test this hypothesis quantitatively, and study whether a
web-based but face to face instructional setting, both independently and interacting with
student characteristics, impacts differently on achievement and concepiual
understanding than a regular Calculus class setting does.

We also found that student engagement rose dramatically after the move into a
physical setting that promoted collaborative work. All the students that were interviewed
commented on the positive impact of collaboration on their motivation and learning. This
finding corroborates the findings of many researchers (e.g., Abrami et al. 1995) that
collaborative learning instructional settings promote student achievement and
conceptual change by requiring students to engage in conversations about subject
matter. All students also commented on the merits of the collaborative quizzes that the
instructor used. The quiz questions were complex but students could use the materials
on the web and collaborate in arriving at solutions. Without exception, students claimed
that the quizzes heiped them to develop a better understanding of concepts. These
activities not only promoted conceptual change but also enhanced subjective
perceptions of learning and promoted student motivation.

In addition we observed that student prior motivation, epistemological beliefs
about mathematics and affect towards mathematics interacted with our web-based
instructional setting in determining how thye approached learning tasks. Some students
felt that the use of technology was an additional burden for them. For example, one
student complained that in comparison with his peers in traditional sections of Calculus,
his tasks were more time-consuming. Some students questioned whether the graphical
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and numerical approach is useful in the developing of their understanding of Calculus
since they knew that their peers in regular classrooms did not use this approach.
Consequently, they were asking why they should use the computers to facilitate
“redundant” tasks. Although one complainant admitted that he had probably developed
a deeper understanding of the subject than his friends, and had excellent grades, he
persisted in voicing doubts whether it was worth the effort. Another student persisted in
his negative attitude towards mathematics, and, eventually, failed the course. On the
other hand, several interviewed students gradually changed their atiitude towards the
learning tasks, talked about having fun experimenting and learning in this context. We
noted that they exhibited the typical behaviours of motivated students (e.g.,
perseverance) in class and obtained an indication that motivational characteristics (e.g.,
valuing of mathematics, affect towards mathematics, perseverance) interacted with the
instructional setting and so we saw the need to explore this phenomenon guantitatively.

We also observed that some students were overwhelmed by the computer
interface. Often, the same students also reported a limited prior use of computers. In
addition, many of these students only acquired internet access at home during the
course. It appears that for such students we removed one burden, multiple and
repetitive mechanical tasks of graphing and computing values, and replaced that burden
with a new one, equally frustrating and time-consuming. It is important to note that this
experiment was carried out in the Fall 1999. Subsequent rapid change in access to both
computer technology and the internet may have minimized this problem in Fall of 2001
and 2002.

Some students were dissatisfied in our web-based instructional setting and did
not engage in experiments, because they believed that it was the role of the teacher o
dispense knowledge. We propose that their behaviour is related to their epistemological
belief that knowledge is certain. To use an analogy, some students perceive learning as
a process similar to the process of getting information off the web, that is search,
download, and store the facts on the local hard disk. Others see it as a creative
process. However, we observed that these epistemological beliefs may change. One
student reported such a change over the course of the semester and then said * What's
surprising with this semester, is that before [in the] first semester® | [would] get a good
grade, the second semester | [would] get a good grade but let's say you ask me
something from the first semester | don't know anything about it. | forget everything.
What's surprising here is that | remember . . . That means somehow I got a different
education. That means I'm not really worrying about the test.” This anecdotal testimony
indicates that this student understood the concepts since he could remember them,
which is in agreement with Hammer's (1994) contention that the epistemological beliefs
of a student and the likelinood of conceptual change taking places are strongly related.
Furthermore, it implies that web-based settings may result in students changing their

*The student was referring to the two semesters in his high school 536 course.
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beliefs, while it has been shown that standard science education settings reinforce
beliefs that knowledge is certain (Paulsen & Wells, 1998).

The above quote also indicates that this student's self-efficacy was positively
affected in this instructional setting. On the other hand, we have also noted that one
student reported a decrease in confidence. Although she saw herself as a very
motivated and internally driven student, who had always been good in mathematics, she
stated that she often felt unsure whether, as she put it, she was “seeing the right things”
when drawing conclusions from experiments. She acknowledged that she was doing
well in the class despite feeling unsure, but in her words, “l am learning Calculus by
myself’, and that although this fact “. . . should make me feel confident, . . . it does not. |
am never sure ..”. Obviously, this instructional setting was not having the positive effect
on her feelings of self-efficacy that we had imagined inquiry-learning would evoke.

Our instructional design was initially intended as a student-centred learning
environment with assistance provided by the teacher as needed. Student satisfaction
varied from enthusiastically positive to emphatically negative. We suspect that student
satisfaction may be related to locus of control, with dissatisfied students being externally
controlled learners. Students who craved more step-by-step instruction were also
amongst those who complained most about the new environment, although, within the
group who were interviewed, dissatisfaction had no impact on achievement. Our
findings are at odds with resulis reported by Davies & Berrow (1998) who demonstrated
that externally controlled students did less well in a computer-supported environment. In
response 1o student dissatisfaction, the teacher introduced lectures which included
modelling how to experiment. This led to an increase in student satisfaction,
engagement and self-regulation in some students. Since the aim is for students 1o
become self-directed independent learners, we see the need to systematically study the
change in student self-regulation and achievement in a scaffolded-modelling condition,
i.e., where teacher modelling is gradually reduced and the learning environment
becomes increasingly student-directed. We need to investigate the interaction of locus
of control, use of self-regulatory strategies, achievement and motivation in each of the
different instructional settings.

We note that the notion of using experimentation in learning, mirroring the
scientific method, is also recommended as a useful technigue for constructing
conceptual understanding by Barbeau, Montini & Roy (1997). However, our own
preliminary results (Dedic, et al., 2002) have shown that simply providing students with
the opportunity (time in class to work on a task) and tools that make experimentation
possible (in terms of the time, energy and mental capacity required) is not a sufficient
condition to impel most of them to actually do it, and hence improve their grasp of
concepts in Calculus. Some students failed to see any patterns, became frustrated and
reverted to memorization. We hypothesize that students in this setting also need to be
self-regulated learners to make the most of it; that is, they must possess appropriate
meta-cognitive strategies (e.g., evaluation of one’s own knowledge) and appropriate
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cognitive strategies (e.g., generalization), as well as understanding the processes of
experimentation,

Collaborative learning is an important component of this implementation. Our
preliminary results (Dedic, et al., 2002) show a positive impact of student collaboration
on affect towards mathematics, motivation and conceptual understanding. The use of
technology can facilitate communication and interaction amongst students outside the
classroom. Thus, using technology can extend student collaboration, which in turn has
been shown to promote both traditional achievement outcomes and conceptual
understanding. Our results seem to corroborate those of Neff (1998), who indicates that
the use of technology (CAS and electronic communication), particularly in Calculus and
Physics courses, greatly increases active participation and correspondingly diminishes
failure rates.

Distance education (DE), is now making inroads in day school, with as much as
sixty percent of enroliment in some DE courses consisting of fuli-time day students
(Johnson, 1998). This would seem to indicate quite strongly the need amongst daytime
students for courses in which they can exert more control over both pace and
sequencing. Thus, placing resource material on the Web satisfies the needs of these
students to self-direct their learning.
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Hypotheses

Our previous work, which was exploratory and anecdotal in nature, uncovered
interesting processes. The natural next step was a quantitative investigation of those
processes. Thus, the primary focus of this study was to contrast the effectiveness of two
different computer-supported instructional settings in Calculus with or without
collaborative learning against the effectiveness of standard instructional settings with or
without collaborative learning. We address the following questions: “Does incorporating
computer and communication technology into the teaching of Calculus generate a
positive effect in terms of higher student scores on measures of learning and student
motivation, and can we separate any such effect from that obtained by incorporating
collaborative learning structures?”

Thus the hypotheses in this study can be stated as follows:

1. Comparison of the performance of students using WebCal versus students not
using computers at all:

a. Students using WebCal will outperform students not using WebCal.

b. Students in Collaborative Mode of Instruction sections will outperform
students in Lecture Mode of Instruction sections.

C. There will be a positive interaction between the impact of using WebCal
and being in a Collaborative Mode of Instruction section on student
performance.

d. Students using WebCal will be more motivated to study mathematics

(increasing self-efficacy in mathematics, more positive attitude towards
mathematics and a higher value of knowledge of mathematics) than
students not using WebCal.

e. Students in Collaborative Mode of Instruction sections will also be more
motivated to study mathematics than students in Lecture Mode of
Instruction sections.

. There will be a positive interaction between the impact of using WebCal
and being in a Collaborative Mode of Instruction section on student
motivation to study mathematics.
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2.

The performance of students using WebCal in Collaborative Mode of Instruction
will improve if formative feedback is provided during classroom expenmentatlon
as opposed to the provision of feedback after experimentation is over.®

Comparison of the performance of students using Maple versus students not
using computers at all;

a. Students using Maple will outperform students not using Mapie.

b. Students in Collaborative Mode of Instruction sections will outperform
students in Lecture Mode of Instruction sections.

C. There will be a positive interaction between the impact of using Maple and
being in a Collaborative Mode of Instruction section on student
performance.

d. Students using Maple will be more motivated to study mathematics

(increasing self-efficacy in mathematics, more positive attitude towards
mathematics and a higher value of knowledge of mathematics) than
students not using Maple.

e. Students in Collaborative Mode of Instruction sections will also be more
motivated to study mathematics than students in Lecture Mode of
Instruction sections.

f. There will be a positive interaction between the impact of using Maple and
being in a Collaborative Mode of Instruction section on student motivation
to study mathematics.

Information about the experiment concerning the use of feedback in WebCal
based sections, that is, concerning hypothesis 2, was published as part of a
chapter in the book “Learning and teaching with technology: Principles and
practices” (S. NAidu, Ed.) and delivered as a paper at the conference CATE,
Rhodes, Greece 2003 and published in the conference proceedings. Thus, this
information is presented in a separate chapter and so is not included in the
methodology, results, discussion, etc., chapters of this report.
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Methodology.
Research design

A 2x2 Factorial Design (Campbell&Staniey, 1963; Campbell&Cook, 1979;
Abrami, Cholmsky & Gordon, 2001) was used in two studies to compare the
effectiveness of integration of compuier technology and of collaborative learning
activities. The two studies refer to two different modes of integration of technology: a
web-based course using CAS and a course that uses CAS alone.

Participants:

The participants in this study were 384 students enrolled in the first semester in
Fall of 2001 and Fall of 2002 at Champlain Coliege, Vanier College and Dawson
College pre-university programs. Students were registered in ten different sections of
Calculus | (201-NYA-05). Due to administrative problems one group of participants (21)
were registered in a section of Calculus | (201-NYA-05) given in the second semester at
Dawson College. The sample of students is intended to represent the population of
CEGEP students enrolled in the pre-university science program in anglophone colleges.
All participanis signed an informed consent form, and both the protocol that was
followed in this research and the informed consent form were approved by ethics
committees at Dawson College, Champlain College and Vanier coliege.
(see Appendix 1)

In accordance with accepted practices at Champlain College, Vanier College and
Dawson College, students are quasi-randomly assigned to sections by the Registrar of
each of the colleges. The particular sections of the Calculus course used were selected
because the teachers agreed to participate in this experiment. Six different instructors
taught these sections and each used an instructional design that they use regularly. We
anticipated that there might be pretest group differences because of possible
differences in student populations at each of the Colleges and across the different terms
of data gathering.

Web-Cal Intervention

imtroduction

Wandering the floor of the "merchandise mart” at the 1989 National Educational
Computing Conference we came upon two software booths across from each other. On
our right Soft Warehouse was demonstrating Derive, a CAS system that was a giant
leap forward in user friendliness and capability over their earlier product muMath. On
our left was an early DOS task-switching product called Black Magic. This conjunction
generated instant discussion amongst ourselves about the potential for a new kind of
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mathematics textbook, where theorems, examples, problems, eic., would all be
interactive, allowing students to change a function definition, the x-axis interval of
interest, and watch corresponding graphical/numerical information change instantly.
Naively, we bought both products intending to generate the first electronic Calculus
textbook. Sadly, after months of effort we concluded that the then current
computers/operating system, and we ourselves, were not up fo the task. As technology
rushed forward CD Calculus texts appeared, but none of them quite captured the vision
that we had shared in 1989.

Over time we ourselves were influenced by the reform movement in Calculus,
particularly the text of the Calculus Consortium based at Harvard, and so the goals we
set for our students in Calculus changed. We came to accept the reality that a few years
after taking a Calculus course the majority of students do not remember how to perform
many technical manipulations. Thus, we decided to focus on concepts, which might
"stick" longer, but are harder to teach/learn/test. First, we agreed that our primary goal
is to create an understanding that mathematics in general is about patterns: looking for;
testing the generality of; and, proving that under specified circumstances they exist. To
discover this students must be given an opportunity to generate and observe many
instances of function behaviour before they can begin to see patterns and generalize
(Papert, 1980, 1992). In pursuit of student conceptual understanding we are committed
to the Rule of Four (balance, mix and move fluidly between graphical, numerical, verbal
and analytical approaches to mathematical topics). We found that many students do not
generate enough examples to make underlying patterns and concepts self-evident.
Their reluctance probably lies in the time consumed in doing so. We also found that
even students who commit the time and generate many examples often don't see
patierns. It is possible that the work of generating examples overtaxes their mental
capacity, leaving no reserve capacity with which to observe patterns and concepts.
Second, we want students to realize that Calculus is the mathematics of change and we
have noticed that static diagrams presented in conventional texis fail to convey this
notion. Third, we noticed that in our classroom practice we rarely meet the needs of
individual students in terms of their different learning styles and the speed at which they
learn.

In 1998, almost a decade after our initial inspiration, we began to construct our
own interactive web-based materials, WebCal, for use in the teaching of Differential
Calculus. In pursuit of this project we used new technology because we felt that it would
allow us to remedy difficulties faced in teaching towards our objectives while catering to
our individual students' needs. Consistent with our original 1989 vision we decided to
program mathemaiical experiments using CAS software and embed these programs
within an exposition of the ideas and techniques of Differential Calculus. One purpose
was io remove the burden of mechanical tasks, aliowing students to generate examples
rapidly and freeing student mental capacity to focus on patterns and concepts. A
second purpose was to replace static diagrams with animations, helping students 1o
more clearly understand the notion of change.
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We also wished to minimize siudent costs. Amongst the various CAS software
packages we found LiveMath (http://www.livemath.com, formerly MathView, formerly
Theorist) to be unique. This software allows authors to create files containing
mathematical experiments (hereafter called LiveMath inserts) that can be inserted in
web pages, and all the student requires is a freely available plug-in. With the plug-in
installed within a browser the student can manipulate values/formulae and see the
corresponding changes in related values/formulae/graphs. Although LiveMath is less
powerful than the more popular Maple and Mathematica, and because of that much
more difficult to program, it is inexpensive for teachers to buy, and allows free use by
students of their teachers’ labour.

WebCal materials

Since virtually all of our students have computers and internet links at home (and
the remaining few have access at school), we decided to place the materials on the
web, allowing our students to control sequencing and pacing of learning as well as
providing access to WebCal at any time.

Home Page
Welcome to WebCal rnr\-g%g'xin

The Rule of 4

Understanding Calcutus requires
4 modes of representat

ittt

SR Modules G E

Functiops from a Calouluz
B B -Eﬁ:r‘-‘, Cotve o o

o

U Intraduction ko WehGal .

Hew bo sirceed

‘me‘_

Materiats sodubions, practice teeks, ate’

WebCal divides the content of Differential Calculus into five modules: Functions
from a Calculus Perspective; Intuitive Calculus; Limits and Derivatives; Differentiation
Rules; and Applications of Differentiation. Based on the recommendation of Harvard
Consortium, the first two modules begin with a thorough review of functions. Students
are not prepared to learn concepts of Calculus since their prior knowledge of functions
is predominantly algebraic/symbolic. Functions are presented in algebraic form and their
behaviour studied both graphically and numerically. Students are lead to investigate and
discuss the behaviours and make verbal, algebraic, graphical and numerical predictions
and observations. They also learn how complicated functions are generated from simple
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functions. This gives them insight into behaviours of complicated functions. The figure
below shows a typical exercise from this website.

Multiple Perspectives

. Exploration 1 | You can use LiveMath to compare the left-hand limlt with the right hand limlk for 2 function at x=e E

[ viece s EZEIMATR MAKERA  BETT8 PR O3
Ji zee
Newion (Justun? (NQV af 7= f, rea
b oi=a

“fhe Function displayed by UveMath Is 2 power function, Decrease the value of & and see how the
secant lines {red from the right and blue from the left) approach the same tangent line. Note that
you may have to change the vertical range of the graph to see the details. See the same result In
tha two tabias which plot the values of Newton's Quotient. (Table beside graph shows right-hand ;
values while table below shows left-hand values.) Now, use LiveMath to explore functions for which
the laft-hand jimit Is different fram the right-hand limlt. Set 7, = ' and gradually decrease the vaiue

* of ir. The function fis tontinuous but the secant lines (red from the right and blue from the left)
. don't approach the same tangent Nne. In your next exploration, change b tw 2 and 7, to ¥ +1and

. NG
then observe the bahaviour of the two sacant lines whiie decreasing h. You may also change £, to < adn -’-L——}—IU“" 2 :i '_;:‘:
and leave b =2, a43h)-fa) (7] 12 23

v H 12 12
. fla=2h)-fie 11 n

a=ih =

avh ELdald ga

The review discusses properties of families functions (power functions,
polynomials, rational functions, etc.) in relation to their behaviours, e.g., how they
behave at the edges, their rate of growth, Students discover and develop an intuitive
understanding of Calculus concepts such as limits, asymptotes, continuity, local maxima
and minima, concavity etc. The review of functions and intuitive Calculus take
approximately six weeks.
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Intuitive Calculus Concept

Exploration ; Explore the behaviour of fz) at the edges of the graph and compare it to the behaviour of hlx). g

“The numbare I, 11, bt and tp stand respectively for the left, right, bottom and top edges of our ‘window’ upan the groph; if necessary, change these to gain
| better perspective, You may also change both grids by changing the values of xgrid and ygﬂd S

T g mans wes EEEIMATHMAKERA B T

The rdges of the graph of ranonal functions
p= 3xispst- i
g B |
_ 327
The red graph Is 2 plot of f{xj with numerator p{x) and denominatar g(x), The k= :
blug graph Is a plot of 4(x) where m is the degrae of the numarator a2nd 2 Is the i |
deyree of the denominater . e — ‘ .
oz
First change both the numeratsr p{x) and denominator g{x) of /{x) by changing Se |
the degree and the ¢oefiictents. Then change m and » to creste i(x) .
ot
1t Is important to concentrate on the edge behaviour and the fact that Alxy has | [ | -
. the same trends at the edges as f{x). The graphs of the two functions are - //
‘ cerminly diffarent In the middle part of the graph and at the edges may oaly run :
parallel to each other. . _\
<z 2 b 2 . i
Focus your study on threa cases: m>x; m=5n; m<n. Be careful to note the effect te~f n=5 w=-10 p=10
of the sign of leading coefficiants., L ommd =03 gmid =i

Each module is subdivided into sections, each section covering one topic. Each
section consists of class notes (called the Lesson) and a set of solved examples that
model solutions of typical problems (called Examples). In addition, buiit into the WebCal
materials are evaluation structures and the means to aftain appropriate prerequisite
knowledge, both of which favour conceptual change (Pintrich et al., 1993). According to
Pintrich and his colleagues (Pintrich & al., 1993), prior knowledge structure influences
perception and selective attention to new information. Students may misperceive or
choose to ignore data that contradicts their prior concepts. In such cases, the students'
prior knowledge structure becomes a hindrance o learning. To assure that studenis
have the appropriate prerequisite knowledge conducive to learning a new concept,
WebCal provides students with prerequisite material in every section (Prerequisites,
Check-in) as well as access to the reference module on algebra and functions, and
keyword definitions so that students can refresh their memory or to learn the ideas if
necessary.
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EENEEEEEEE

Active Student Involvement
recloroos! firation mizsing pointe vartice] sgumatats hotizontal seymniote penie and valleys

Reciprocal Functions
Prerequisites

You should know the following:

t. the x-y coprdinate system,;
2. how to greph & functlon f1x) given & formuls;

3 power funztions;

Successful learners possess appropriate meta-cognitive strategies (e.g.,

evaluation of one’s own knowledge). Consequently, to promote meta-cognition each
section also includes Assignments (a list of assigned problems to practice) and
Check-out (a list of competencies that students must acquire in the study of the section
materials). Students use these features to assess their knowledge before proceeding to

the next section.

IEEEEEREED

Cognitive Awareness

Tlhe Limit of a Function

check-Out
Before you close thiz lesson, maks swe that you ¢an!

. prove that a given numbsr L ig the {imit of a given (simpl=) function flx) as 1 spproaches some glven Number g,

. prove that & given number £ is not the Hmit of 2 glven (simple) function fix) as x epproathes some given frumber a;
givan a (simpie) functian flx) end some particular value of x, such as @, numerlcaily datarmine the mit of the functicn within & intereal of
unceriainty, and using the definitlon demonstrate that you Indeed have found en eppropriats interval of uncertainty;
atven & function flz), 15 hmit L as x approachse 2, and & particular value for ¢, determine & suitable &;

. given the graph of & function, determing all requested limits for tne function;
given the limits of & function at various points, sketch a graoh of the fungtien,

[ N

o b

In addition to Check-Out, the website includes quizzes that pop-up automatically

while students use the materials. These quizzes provide immediate process oriented
feedback concerning the thought process that led the student to their current
observation or predictions, Moreover, when students make an erroneous prediction or

observation they are given another chance.
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WLy —_

From/'tof i —3

Please answer the following question before you continue with furthy
expiorations af this LiveMath:

The four statements a, .., 4, below describe relationships between
the funclions J° and fthat we use when we sketch o graph of f°
given one of /. One or more of these statements may be false.
Read each stptement carefully and dedde whather or not it Is rue
ar false. Then click the button beside the answer that agrees with papecively. .

your evaluation of the truth/Talsehaod of all Tour statements, h of 7, gvan only a graph of /7% Yo make this reafiy effective,
1h iz & tool that is avalabie while you are leaming, but it will

EREEE

a. On ana-interval wherg @ graph of 77 lles balow the x-axis, 2 grash
of /will be decreasing. ; .
b The a-intsrceots of a graph of J7 correspond (o x-values where @ § DA mo ERRAMATHMAKER- EESTI nut s 22 f o

graph of Fhas githar a local maxrimum, o local minimum, or a E Deduce fiv) Jroo f'ix)
stationary point, i=1
¢ The xwvalues where stopes of tangsnt lines to a greph of 7' graph Hl J=1

change sign by passing through Zere comespond to x-valuss where
a graph of fchanges concavity.
@ On anx-Interval where the slepe of o graph af 7' 1& positive, &

graph of /il be concave up. s : . R
r all of the chove are trus At Tt st
| 4

£ b, candd are trug, ais false
r g ¢anddars trus, b s faise

r & & and d are trug, ¢ is faise

T g, beandcare true, d iz false

Submit Reger B Ll

= : S
i = JIETTOTTITaOuTT T da TRV E UTUS TROC lrt‘u) TgngmS Um uieE XraxisTdl S ; _‘ 1 N . N : .
indicating where 7' is increasing (decreasing), and hence where 7is concave TR {m“

) up {down) and where /*Is positive (negative);
i & the Information In 5 ahove plus a black colour plat of a graph of 7}

Depending upon the section, as many as three or four LiveMath inserts are
embedded within the class notes, and additional LiveMath inserts may be placed within
the Examples as well. LiveMath inserts are used as tools for the instructor fo
demonstrate complex concepts, as tools for students to experiment with functions as
well as problem solving tools. Below are three examples of use of Live Math inserts.
Please note that descriptions below of LiveMath inserts, as part of the WebCal
materials, are impossibly inadequate. As the saying goes, a picture is worth a thousand
words, so imagine the "word value" of dynamic pictures, and the impossibility of
describing them in brief.

LiveMath Inserts as Demonstrations

Some concepts in Calculus are particularly difficult to grasp. For these the
instructor uses LiveMath inserts as demonstrations, working at her computer, projecting
the screen image for the entire class, and commenting aloud. For example, students
often have trouble grasping the relationship between a function, f (x), and its derivative,
f'(x). That is, having grasped the notion of the derivative as slope of a tangent iine to
f (x) at a point, they fail to see the derivative of f (x) as also being a function of x, and
one that describes the "direction" of f{x). To facilitate student understanding of such
concepts we designed an animated LiveMath insert. A grid is shown with three sets of
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axes stacked vertically: the top for a graph of f(x); the middle for a graph of f'(x); and
the bottom for a graph of f "(x). The first animation shows a graph of f{x) and a moving
tangent line segment, complete with a right triangle showing “rise” and “run” as well as
an analytic expression for the function 7 (x). The second animation consists of two
graphs {f (x) and F'(x)) plotted one above the other and an analytic expression for the
function 1 (x).

Experiment {o Learn

i T s : S e T
3 el coe T ek i RS DR
e LG T I P L - :
- T o Lo :
204 Tl sl Tk E ! =
+ +
7 2 1 s I 2 7 2 b4 2
s S [P Y L Kk L. PP . X 1]
. S gl 0 2‘J<i> ; s
z ; s - N : o
K] = " H : Kl + J7 3 H 2 z 2 . K] = e 2 2 =
Ciek 1o Asmaze felick aganto ztsp} | {Click to Ammate felick oo o tap} | Cliek to Aurmate felick nfanrostep) €Uk to Aamare chek agan (s top) ihck to Ammate (hek apai o stcp)
: “ 1 | S
= le = \\_ ;| i TN o omi
B S YL RS R N ST APREA I -
‘ Jape. B3 L e ot 1 0+ ! - ﬁ--
! S g N
| : ; b < ‘ | L ‘
: + - + + :
.2 I Era .. 2 2 i e, 2 k3 < f - 2
//3» B VL IR s _,.."/il 04 e 17 .'"‘"‘-.L . /_./‘ T Y . 7“-\_‘..,_;
e ' "--,,/ H T . ]
| ol T B m]L
| ] o : | : -
t * —t :
L N L N R L R
Cleck 2 Artrmate (¢lick agzin o a12p) {Chizk b Ammate [chek afain 1o 3107) A Circk t2 Ammate fehck agan 1o stsp) . iClick 1o Ammate fchiek again ta siop) : iC0izk te Armimate (zhek agam fo ep)

The two graphs in the second animation are plotted aligned one above another
because the relationship between them is easier for students to see when they are
presented in this fashion. The top graph plots x(f) versus t while the bottom graph plots
v(t) versus t. The top graph also shows a tangent line, displayed as the hypotenuse of a
right triangle, where the vertical side is the "rise" and the horizontal side is the "run". The
run is set to have a constant value of 1 so that the length of the rise actually equals the
slope of the tangent line. That is, the length of the rise demonstrates visually the value
of the derivative (velocity) at that value of t. The LiveMath animation traces the plot of
the function from left fo right along the t-axis, while correspondingly moving the tangent
triangle, and tracing the plot of v(f) as a function of t below.

As is the case with most LiveMath inserts, this animation is complex, conveying
much information simultaneously. The instructor uses it as a demonstration, pointing out
animation features thereby helping students to grasp the concept. The instructor then
madifies the function definition and runs the animation again. This activity allows
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students to draw conclusions regarding the relationships between f'(x) (or v(f)) and f(x)
(or x(1)), while noting how the characieristics of f(x) determine those of 7'(x) and vice
versa.

LiveMath Inserts as Experiments

/i r<a
KNewion Guotient (ND) of /=1 o x<a
1\ b x=nqa
J= %" fj=x2
b=1
@=1
k=01

bi=-05 tp =25 ygd =0.2

HQ \
STe+5hi-ilal
5Hh I ( x HQY
Fla+dh]-fle] 1.5 25 |
4k _| 14 24
e +3n]-fla]l 13 23
3k 12 22
flaszhlfla] | \LL 21
2h
f[a”!]—f{a])
k

/ 3 HQ \
a-5h fla-58]-#la]

[-51k f x HQY
a—dk fle~4hi=-fla] 0.5 1.5 i

-4k _| os 186
_ fla-3h]-fle] 67 17
o3k =33k 08 18
teon  fla—2h)-fla] | \08 18 )

[-21x
\ a=h fle~h]-fla] /
~h

LiveMath inserts are often designed to investigate a single concept and as such
are well suited to be used for student experimentation. For example, to introduce the
derivative as the slope of a tangent line, approximated by the slope of secant lines,
students are presented with a LiveMath insert containing the following information:
function definition, e.g., f (x) = xA2; x value of interest, e.g., x= a = 1, initial value of A,
e.g., h=0.1; tables of ordered pairs (x values ranging from a-5h to a+5h, steps of size
h, and y values the corresponding Newton Quotient values) presenting both symbolic
expressions and numeric evaluations; and, coordinate axes displaying an appropriate
piece of the graph of f(x) in black, a red secant line connecting (a.7(a)) to (a+h.f (a+h}))
and a blue secant line connecting (a,f (8)) to (a-h,f (a-h)).
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Each pair of students is directed to modify: the value of h, controlling the
accuracy of the secant approximations; the point at which the derivative is being
estimated; the function. They are told to observe how numerical values of the slopes of
the secant lines change as the value of h is decreased, while simultaneously the secant
lines from both the left and the right merge towards a single tangent line. Thus, the
student is presented with dynamically linked symbolic, numerical and graphical
perspectives of this fundamental mathematical concept, and asked to verbalize with a
peer. The simple effort of typing in new values (for i, x or f(X)) helps students to see the
links between these perspectives, and hence to generate an overall understanding of
the definition of the derivative as a limit of Newton's Quotient.

! fi x<a

Howton Quotient (NQ) of f={ I x<a

[ =
\Enxa

0.2 _
/ % e \
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Students record observations on worksheets which serve the dual purposes of
providing guidance concerning what LiveMath insert manipulations might be fruitful, as
well as providing a focus for concept formulation in four perspectives (see Appendix 8).
The instructor assists individual groups.
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LiveMath Inserts as Problem Solving Tools

LiveMath inseris are also used as live diagrams, or simulations, to aid students in
problem solving, for example in related rate word problems. Such problems are
presented in textbooks with a static diagram illustrating the given situation's gecmetry.
Unfortunately such diagrams mislead weaker students not yet capable of visualizing
how changes in one (or more) variables cause changes in another {or others), or which
variables will remain constant, both of which observations are the essence of related
rate problems. Animated versions act as initial support enabling the weaker students to
develop this type of understanding.

The squares in this dagram are 2 mby 2 m.

A hemispherical poo! of radius 20 m is filled
with champagne. A bubble forms on the

botiom of the poel and rises up the ceniral I
axis at a speed of 0.2 m/s. A light is fixed
to the side of the pool at the surface and :
casis the shadow of the bubble on the - o
opposite side. Champagne being what it is, e
the following problems have elegant . T
solutions. SR OO FVUUOUSSR OOV

i

Click to Animate (click again fo stop)

Animate this graph for g = [ ... 20 in steps of% for & totet of

50 frames [m & cycle || at [ 10 frames/secondil

Students use these simulation tools when working on collaborative quizzes. A set
of such quizzes can be found in Appendix 6.

Variables
The independent variable in this study is the instructional setting. There are six
different instructional settings: Lecture WebCal; Collaborative WebCal; Lecture Maple;

Collaborative Maple; Lecture non-WebCal/Maple; Collaborative non-WebCal/Maple.

There were two types of dependent variables: measures of student performance;
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changes in student motivational characteristics. Student data on the measures of
performance were obtained throughout the semester. Changes in motivational variables
were measured as differences between responses to a questionnaire administered at
the beginning of the term and again at the end of the term (i.e., post-test minus
pre-test).

The following variables, each of which might change over the course of a term, or
might influence student reaction to a particular instructional setting, were examined:
gender; prior motivation; locus of control preferences; preference for work in groups;
social interaction in groups; dependence on a structured learning environment; attitudes
towards computers; and, evaluation of instruction.

To assess student characteristics a 100-item questionnaire (see Appendix 2) was
administered 1o students during the first two weeks of any course (a pre-test) and during
the last week of classes (a post-test). It included scales for the following motivational
variables: goal orientation; value of knowledge of mathematics; affect towards
mathematics; self-efficacy. In addition, it included scales for the following other
variables: gender; locus of control; preference for work in groups; social interaction in
groups; dependence on a structured learning environment; attitudes towards
computers: and, evaluation of Instruction. In the paragraphs below we define each of
the variables and describe in more detail how it was measured.

Independent variable
Six instructional settings:

WebCal Calculus | course without collaborative learning. Class sessions were
held in a computer laboratory, with pairs of students sharing each computer, and the
teacher's computer wired to a projection system. The instructor lectured using WebCal
as the source of instructional material. In the course of a lecture, the instructor
introduced a new concept, used LiveMath (CAS) demonstrations to clarify the concept,
and solved problems on the blackboard. A six-week long review of functions included
intuitive discussions of the main concepts of Differential Calculus. This was followed by
precise definitions of the main concepts of Differential Calculus, and then their
application. At least eight quizzes were given in the course of a semester (see Appendix
8). Students were encouraged to experiment with LiveMath inserts outside the
classroom. WebCal materials (lecture notes, solved examples and LiveMath inserts), as
well as a regular textbook, were the references for student work outside the classroom.

Web-Cal Calculus | course with collaborative learning. Class sessions were held
in a computer lab, with pairs of students sharing each computer, and the teacher's
computer was wired to a projection system. Brief lectures with demonstrations preceded
collaborative activities or experimentations using LiveMath (CAS) inserts. These inserts
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were primarily used by students in three different modes: experiments; tools during
collaborative quizzes; and, tools to solve problems. A six-week long review of functions
included intuitive discussions of the main concepts of Differential Calculus. This was
followed by precise definitions of the main concepts of Differential Calculus and their
application. At least eight collabarative quizzes were given in the course of a semester
(see Appendix 8). Groups of four students discussed the problems and their solutions.
To further promote collaboration, each student in a group of four submitted their work
but the instructor randomly selected one paper for grading and the same grade was
given to all four students. WebCal materials {lecture notes, solved examples and
LiveMath inserts), as well as a regular textbook, were the reference for student work
outside the classroom.

Mapie (CAS) Calculus | course without collaborative learning. Class sessions
were held in a multi-media classroom (i.e., equipped with a video screen and a teacher
computer). The teacher lectured most of the time. In the course of a lecture the teacher
introduced new concepts and solved problems on the blackboard, emphasizing
algebraic skills. Occasionally (15% of time), the teacher used Maple or Cabri Il to
demonstrate graphical properties of functions or to illustrate a new concept. These
demonstrations emphasized graphical and verbal perspectives of concepts. A short
review of functions, approximately two weeks, was followed by an introduction to the
main concepts of Differential Calculus and their applications. Seven Maple lab sessions
were held in a computer laboratory in the course of a semester (see a sample of
laboratory manuals in Appendix 4). Students working individually first learned Maple
syntax and a number of Maple commands. Then they used Maple to solve probiems
and to explore graphs. Each student was required to submit a written report on each
Maple lab. The textbook was the sole reference for student work outside the classroom.

Maple (CAS) Calculus | course with collaborative learning. Class sessions were
held in a multi-media classroom (i.e., equipped with a video screen and a teacher
computer). The instruction given in the multi-media classroom was the same as in the
setting described above. Similarly, seven Maple lab sessions were held in a computer
laboratory but in this setting the students worked on the labs in groups of four. Each
group learned Maple syntax and commands, and then students collaborated on tasks
set before them in the laboratory manual (see Appendix 4). To further promote
collaboration, each student in a group of four submitted their work but the instructor
randomly selected one paper for grading and the same grade was given to all four
students. The textbook was the sole reference for student work outside the classroom.

Traditional Calculus | course without collaborative learning. Class sessions were
held in a regular classroom. The teacher lectured most of the time. In the course ofa
lecture, the teacher introduced new concepts and solved problems on the blackboard. A
two-week review of functions was followed by an introduction to the main concepts of
Differential Calculus and their application. The textbook was the sole reference for
student work outside the classroom.
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Traditional Calculus | course with collaborative learning. Class sessions were
held in a regular classroom. The teacher lectured most of the time. In the course of a
lecture, the teacher introduced new concepts and solved problems on the blackboard. A
two-week review of functions was followed by the introduction of the main concepis of
Calculus and their application. Eight collaborative sessions were held during the
semester. To further promote collaboration, each student in a group of four submitted
their work but the instructor randomly selected one paper for grading and the same
grade was given to all four students. The textbook was the sole reference for student
work outside the classroom.

Dependent Variables
Measures of Achievement:

Achievement was assessed by measuring student performance on six different
problems that all the instructors inserted into their regular term tests or final
examinations.* These problems span all major topics of Calculus |. Two problems on
limits include one problem which mostly tests students ability to compute the limits using
the rules and another problem which tests student conceptual understanding of the
concept of limits at infinity. The function in the second problem on limits is presented
graphically and students are asked to determine the limits from their examination of the
given graph of the function. Two other problems that test students’ ability to compute
the derivatives were used: one requiring use of the definition of derivative (Newton
Quotient); another requiring use of the rules of differentiation (e.g., product rule, chain
rule, eic.). The last two problems test students’ ability to synthesize the concepts of limit
and derivative and use them to deduce features in a graph of a given function (a
polynomial function and a rational function). All six problems are typical Calculus |
problems that could be found on any traditional examination. We have developed a
coding schema for each of the six problems (see Appendix 3). The coding schema were
tested and improved until inter-coder reliability exceeded 85%. Then two coders coded
all papers.

“Note that the researchers and the instructors jointly developed a set of fourteen
problems that was intended to be used to measure students’ performance.
Unfortunately, through a series of mishaps over the period of three semesters we only
have six problems that were given to all students under the sufficiently similar
conditions. For example, one of the problems was eliminated because an instructor
included it as a bonus question rather than a compulsory question; another problem
was eliminated because two of the instructors gave additional instructions to the
students while the examination was in progress. This type of difficulty arises primarily
because most CEGEP teachers are not used to being involved in educational research
projects. As an unfortunate consequence of this difficulty, the final coded set of six
problems is missing representatives of two important applications of derivatives, ie.,
related rate and optimization problems.
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The coding schema provided us with a record of all the steps that each student
took while solving a problem. The schema also included a count of errors and type of
errors that each student made. A scoring schema (see Appendix 3) was then developed
to evaluate students’ arithmetic/algebraic skills (a count of algebraic errors) and the
ability to correctly use symbolic notation (a count of errors in using mathematical

symbols correctly: e.g.,student writinglim = 3 instead of lin‘zl(x +1) = 3 was counted

x—=2 X
as an error in using symbolic notation). Students’ understanding of graphs was
evaluated by coding how students used computed data about properties of a function
(e.g.; relationship between the sign of the second derivative and concavity of the curve)
1o draw a graph. Students’ ability to correctly use algorithms (a student may use a
correct algorithm but arrive at a wrong answer because of an algebraic error; inversely a
student may use an algorithm incorrectly but still arrive at a correct answer) was also
evaluated. In addition, students' conceptual understanding was assessed by counting
errors made in reasoning. Finally, students’ ability to solve problems and arrive at a
correct answer without making an error was also assessed by counting correctly
answered problems.

Traditionally, instructors’ grading of a solution of a problem is a compaosite of
obtaining a correct answer, extent to which a correct algorithm was used and absence
or presence of algebraic and symbolic errors. The instructors often differ in how much
weight they give to each of the above elements of the solution. Some instructors may
only give a full grade when the answer is correct and assign zero grade when any error
is made. Other instructors give partial grades by taking into account the type of errors
and the seriousness of the errors made. For example, a student may still get a high
partial score if only algebraic errors are made. Obviously, there is some arbitrariness
and subjectivity (bias) in traditional grading. To retain objectivity, all student work was
photocopied for coding prior 1o teacher grading, and we avoided using any composite
grades for any of the problems in this study.

Motivational variables

Goal Orientation: A mastery learning orientation results in the most adaptive
responses, such as an increased effort to solve a problem or more perseverance when
confronted with a difficult situation (Roedel, Schraw, & Plake, 1894). Conversely, a
performance goal orientation is likely to be reflected in maladaptive responses, and is
characterized by a focus on outcomes and a desire to avoid negative feedback. A
9-item goal orientation scale was adapted from a scale developed by Zweig (2001). It
assesses students’ desire to understand concepts of mathematics rather than to just get
a good grade. A low score on this scale indicates that a student is more mastery
oriented than performance oriented. To illustrate this point a typical item is given below:

When | don't understand ideas presented in mathematics courses,
a) it doesn't bother me at all; | only care about my grades.
b} it bothers me & little but if my grades are already good 1 will not try to fix it
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c) it bothers me a lot but if my grades are already good | will not try to fix it.

d) it bothers me a lot. Even if my grades are already good | will fry to fix it.

e) it bothers me a lot. Even if my grades are already good | will not stop until |
have fixed it

A mastery oriented student is likely to respond e) while a performance oriented
student can be expected to choose a) because he is primarily concerned with grades.

Value of knowledge of mathematics. When students are convinced that the
knowledge of a subject is important for them they are more likely to expend the effort
required to grasp difficult concepts and to persevere when faced with difficulties. A
7-item value of knowledge of mathematics scale was adapted from Opinions sur les
mathématiques {L.afortune, 1992; Collette, 1976). It assesses students’ perception of
usefulness of the knowledge of mathematics. A low score on this scale indicates that a
student perceives mathematics to be useful. To illustrate this point a typical item is
given below:

Mastery of basic math concepts is a prerequisite for my future studies.
a) strengly agree
b) agree
c) neither agree nor disagree
d) disagree
e) strongly agree

Affect fowards mathematics: Students who have a positive emotional response
(enjoy, fun, comfort) to learning a subject are more likely to overcome obstacles than
students who have a negative emotional response (hate, dislike, frustration). A 10-item
affect towards mathematics scale was adapted from Opinions sur les mathematiques
(Lafortune, 1992; Collette, 1976). It assesses students’ feelings about mathematics.
Students who score low on this scale have positive emotions about mathematics. To
iliustrate this point here is a typical item:

| have fun solving hard problems in math.
a) strongly agree
b) agree
c) neither agree nor disagree
d) disagree
g) strongly agree

Self-efficacy. Students who perceive themselves as capable of iearning
mathematics and capable of solving problems in mathematics are likely to expend more
effort and persevere in their studies of mathematics than students who perceive
themselves as failures (Hall & Ponton, 2002; Bandura, 1997). This 8-item scale has
been adapted from Motivated Strategies for Learning Questionnaire (Pintrich. et. al.,
1991). This measure assesses students’ self-perception of competence in mathematics.
Students who score low on this scale are students who are confident about their
success. To iliustrate this point here is a typical item:
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| can succeed in math.
a) always
b) usually
¢} sometimes
d) rarely
e) never

Beliefs about knowledge of mathematics: |t is believed that epistemological
beliefs guide student actions. The Epistemological Beliefs Questionnaire (EBQ) was
initially developed by Schommer (1990) to assess students’ beliefs about knowledge
and learning in general. The original version of EBQ was subsequently validated by
Schommer et al. (1992). Qian and Alvermann (1995) refined and validated a slimmed
down version of EBQ by eliminating roughly half of the items, bringing it down from four
factors to two. Elby (2000) and Hammer and Elby (2000, 2002) argue that these beliefs
may not be concepts that students develop consciously. The Schommer instrument is
very general. One cannot assume that assessment of students’ beliefs about knowledge
in general will also assess their beliefs about mathematics (Hofer & Pintrich,1997).
Consequently we have developed, in collaboration with Dr. llona Jerabek of
psychtest.com, a scale that assesses college students’ beliefs about: mathematics;
learning mathematics; and, talent for mathematics. Students who have a low score on
beliefs about mathematics are students who believe that understanding mathematics
implies an understanding of ideas rather than the ability to carry out problem-solving
procedures. To illustrate this point a typical item is given below:

Math is
a) all about understanding general ideas.
b) mostly about understanding general ideas.
c) mostly about carrying out procedures step-by-step.
d) all about carrying out procedures step-by-step.

Students who have a low score on beliefs about learning mathematics are
students who believe that mathemaitics is learned slowly through making and correcting
mistakes. To illustrate this point a typical item is given below:

Making several unsuccessfut attempts when solving math problems
a) is perfecily natural.
b} is relatively normal.
c¢) indicates a potential prablem with student's ability to learn math.
d} indicates that a student has a problem when it cormes to math.
e) a clear sign of a student who is bad in math.

Students who have a low score on beliefs about a talent for mathematics are
students who believe that effort is more important for learning mathematics than having
a special talent. To illustrate this point a typical item is given below:
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Knowledge of mathematics
a) depends entirely on the amount of effort one puts into learning it.
b) depends mostly on the effort one puts into learning it.
c) depends equally on effort and a talent for mathematics.
d) depends mastly on one's talent for mathematics.
e) depends entirely on one’s talent for mathematics.

Preference for work in groups: Students who prefer to work with others are more
likely to succeed in collaborative instructional settings than are students who prefer to
work alone. This 7-item scale was elaborated in collaboration with Dr. llona Jerabek of
psychtest.com. This scale assesses students' preference for problem-solving in a
group, rather than in an individual setting. A low score on this scale indicates a high
preference for group work. To illustrate this point a typical item is given below:

It is useful to work on math assignments in a group because we can help each other.
a) strongly agree
b} agree
¢} neither agree nor disagree
d) disagree
)

e) strongly agree

Social interaction in groups: Students who do not feel self-confident in a
group-setting are unlikely to succeed in a collaborative-instructional setting. This 3-item
scale was elaborated in collaboration with Dr. liona Jerabek of psychtest.com. This

scale assesses students’ self-confidence in a group. A low score on this scale indicates
high self-confidence. To illustrate this point a typical item is given below:

In & typical group setting, | feel left out.
a) always
) usually
¢) sometimeas
d) raraly
)

) never -
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Dependence on learning environment ; Students who prefer to learn in a very
structured environment in which tasks and procedures are given step-by-step will feel
uncomfortable in an environment in which tasks demand that they creatively explore
and formulate their own conclusions. Consequently, such students are not likely to
succeed in the latter type of environment. This 6-item scale was elaborated in
collaboration with Dr. llona Jerabek of psychtest.com. This scale assesses students'
preference for a well structured learning environment. A low score on this scale
indicates high self-confidence. To illustrate this point a typical item is given below:

| get anxious when [ don't get step-by-siep instructions on how io accomplish a task.
a) very characterisiic of me
b) rather characteristic of me
¢) somewhat characteristic of me
d) rather uncharacteristic of me
&) very uncharacteristic of me

Attitudes towards computers: Students who are comforiable learning
mathematics using computers are likely to be motivated to learn in environments in
which computers are used extensively. A 10-item scale was elaborated in collaboration
with Dr. llona Jerabek of psychtest.com. This scale assesses students’ preference for
using computers to learn mathematics. A low score on this scale indicates a high
preference for using computers. To illustrate this point a typical item is given below:

Using computers to learn math is a waste of time.
a) strongly agree
b) agree
¢) neither agree nor disagree
d) disagree
e) strongly agree

Locus of control. Students who believe that internal forces control their life
ouicomes are likely to feel comfortable in environments that give them an opportunity to
explore on their own and to formulate their own conclusions. An 8-item scale that
measures locus of control as a general trait was deveioped by Dr. llona Jerabek and is
available at psychtest.com. A low score on this scale indicates a high internal locus of
control. To illustrate this point a typical item is given below:

Being at the right place at the right time is essential for getting what you want in life.
a) always

b) usually

c) sometimes

d) rarely

e) never
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Coping skills: Students who have highly developed coping skills are much more
likely to adapt to novel environments than students who lack such skills. Consequently,
student who possess these skilis are more likely to succeed in mathematics courses
that integrate the use of technology. A 10-item scale that measures coping skills as
general life skills was developed by Dr. llona Jerabek and is available at psychiest.com.
A low score on this scale indicates high coping skills. To illustrate this point a typical
item is given below:

When the situation changes, 1 adjust my plans.
a) strongly agree
b) agree
c) neither agree nor disagree
d) disagree
e) strongly agree

Evaluation of Instructior: Since six different teachers implemented different
instructional settings it is legitimate to ask whether anticipated differences in student
outcomes are primarily caused by differences in instructional settings or if it is possible
that different outcomes could be attributed to differences in teaching styles. To minimize
the impact of teacher styles we have inciuded three particular questions in the
post-questionnaire, and we used ANCOVA to correct for differences in teaching styles.
In considering evaluation of instruction, only students who indicated that they attended
80% or more of classes were included. The three questions are:

1. When you compare the workload in this Calculus course 1o the workload in your
other science courses, do you consider it to be
a) very heavy?
b) heavy?
c) average?
d}) lighter?
e) very light?

2. In this course | attended
a) more than 90% of the classes.
b) over 80% of the classes.
¢) over 70% of the classes.
d)} more than half of the classes.
) less than half of the classes.

3. The instruction in this course was
a) very good.
b) good.
} satisfactory.
) fair,
)

c
d
e) unsatisfactory
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Resulis
Reliability of scales

. Some of the scales were adapted from previously validated instruments. The
validation process may not apply when items are modified to refer to mathematics
alone and not science in general. In some cases the wording was also slightly changed
and thus, we decided to re-validate them. Other scales were developed specifically for
this study and needed o be validated. We have used a-Cronbach calculation to assess
reliability. A high o-Cronbach value indicates high correlation between items (see the
mean correlation between items in the last column of Table 1 below). We also list
values of mean item variances although we did not use reliability tests that assume
equal variances. We only considered cases with no missing values. Hence the number
of cases in each scale is different (the second column in the Table 1). The number of
items in each scale is listed in column 3 and the a-Cronbach value of the scale is
shown in column 4. The results indicate that the scales goal orientation, value of
knowledge of mathematics, affect towards mathematics, self-efficacy, preference for
group works, attitudes towards computers and coping skills are internally consistent.
Both dependence on learning environment and locus of control are much less internally
consistent, as the average of mean item correlations indicates. The social interaction in
groups scale has only three items which probably accounts for its low a-Cronbach
value, although mean item correlation is not too low.

Note that the beliefs about knowledge scale is not presented in the results, Our
reliability analysis revealed that items in this scale do not correlate. The correlation
matrix showed very small correlations. In addition, some correlations were positive and
others were negative. We subsequently attempted to determine factors within this scale
using factor analysis. Only three factors could be found using this procedure, but the
correlations were weak. We used reliability analysis again to test the reliability of those
factors but the a-Cronbach values were still unacceptably low. Furthermore, in our
expert opinion the set of items in any cone of those three factors did not seem to
address a single particular aspect of beliefs about knowledge of mathematics. We note
that one possible reason is that beliefs about knowledge are neither stable nor
consistent (Elby, 2001). Consequently, we cannot expect that items addressing the
same idea about knowledge necessarily correlate. We intend to use structured
interviews in the future in an attempt to validate such items. Only then will we be able to
examine whether students’ epistemological beliefs impact on their learning in different
learning environments.
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Table 1.
Variable Name Number of | Number of | a-Cronbach | Mean ltem | Mean ltem
Cases ltems variances | Correlations
Geal Crientation 368 9 0.7878 0.7381 0.2521
Value of knowledge of
mathematics 373 7 0.7038 0.8491 0.2534
Affect towards
mathematics 368 7 0.8668 0.8627 0.4485
Self-etficacy 377 8 0.8361 0.7180 0.3893
Preference for work in a74 7 0.7458 0.9367 0.2053
groups ) ’ )
Social interaction in
graups 375 3 0.5808 0.8915 (.2085
Dependence on
learning environment 377 &) 0.6005 1.0620 0.2003
Aititudes towards
compulters J73 8 0.8833 1.2384 0.4863
Locus of contral 365 a 0.6191 1.0780 0.1689
Coping skills 372 10 0,7738 0,7799 0.2549

A comparison of student characteristics.

Participants in this study were taught Calculus ! using six different instructional
settings. As mentioned above, students’ enrollment in Calculus sections was not
random. Consequently, we needed to test whether means of student characteristics
differed across the six different instructional settings. We used one-way ANOVA to test
the hypothesis that the means are equal in all six settings. Since the number of
participants is not the same in each of the conditions we tested whether the samples
had equal variances (Levene's test of homogeneity).

We found that there were no significant differences between the means on all
but five of the characteristics: self-efficacy; preference for work in groups; social
interaction in groups: attitude towards computers; coping skilis. The results are
presented both in table format (Table 2 below) and as a plot below the table. N
indicates the number of students in each of the six conditions.
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Table 2. Seli-efficacy
N | Mean | Std. Dev. F Sig.
Collaborative; non-WebCal/Maple 37| 3.832 5571 3.289 | 0.006
Lecture; non-WehCal/Mapie 98 [ 3.635 .576
Collaborative; WebCal 73] 3.445 .b62
Leciure; WebCal 70] 3.535 .568
GColiaborative; Maple 20 3.131 .555
Lecture; Maple 331 3.485 531
Total 331{ 3.526 574
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Students also significantly differ (p = 0.008) in self-efficacy. The plot above
shows that students Lecture sections using Maple have higher self-efficacy feelings
than students in other sections.

Students also significantly differ (p = 0.006) in their preference for working in
groups when studying or solving problems in mathematics. N indicates the number of
students in each of the six conditions (Table 3 below). The means and standard
deviations for each group are also given.
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Table 3. Preference for work in groups
N | Mean | Std, Dev. F Sig.
Collaborative; non-WebCal/Mapie 37| 3.483 709 | 3.070| 0.010
Lecture; non-WebCal/Maple 99| 3.122 .583
Collaborative; WebCal 73| 3.199 .529
Lecture;, WebCal 70| 3.057 .588
Lecture; Maple 33f 3.183 .648
Collaborative; Maple 20 2.964 727
Totai 332| 3.182 615
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The plot above shows that students in non-WebCal/Maple Collaborative sections

preferred to work individually when studying and solving problems in mathematics.

Similarly, students also significantly differ (p = 0.023) in their social interaction in
groups when studying or solving problems in mathematics. N indicates the number of

students in each of the six conditions (Table 4 below). The means and standard

deviations for each group are

also given.

Table 4. Social Interaction in groups
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N | Mean | Std. Dev F Sig.
Collaborative: non-WebCal/Maple 36 3.694 7231 2.654| 0.023
Lecture; non-WebCal/Maple 981( 3.449 746
Callaborative; WebCal 73] 3.411 620
Lecture; WebCal 69| 3.623 .605
Lecture; Maple 19| 3.140 .B28
Caollaborative; Maple 33| 3.354 661
Total 328 3.477 694
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The plot above shows that students in the Maple Lecture section are more
confident in groups.

In addition, students also significantly differ {(p = 0.031) in their attitudes towards
computers. N indicates the number of students in each of the six conditions (Table 5.).
The means and standard deviations for each group are also given.

Table 5. Attitudes towards computers.

N Mean | Std. Dev. F Sig.
Collaborative; non-WebCal/Maple a7 35614 7151 25011 0.031
Lecture; non-WebCal/Maple 99 ] 3.274 .827
Collaborative; WebCal 73| 3.080 .984
Lecture; WebCal 70] 3.342 .B70
Lecture; Maple 20| 2.850 .834
Collaborative; Maple 33{ 3.100 .827
Total 332 3.232 .B55
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The plot above shows that students in the Maple Lecture section have a more
positive attitude towards computers than students in non-WebCal/Maple Collaborative
sections.

Lastly, students also significantly differ (p = 0.002) in their coping skills, N
indicates the number of students in each of the six conditions (Table 6.). The means
and standard deviations for each group are also given.
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Table 8. Coping skilis
N ! Mean | Sid. Dev. F Sig.
Collaborative; non-WebCal/Maple 37| 3.715 .508 3.978 .002
Lecture: non-WebCal/Maple 98| 3.58 489
Collaborative; WebCal 73] 3411 537
Lecture; WebCal 701 3.484 505
Lecture; Maple 20 3.178 557
Collaborative; Maple 331 3.448 413
Total 3311{ 3.500 517
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The plot above shows that students in the Maple Lecture section have a more
coping skills than students non-WebCal/Maple Collaborative sections.

The effectiveness of WebCal usage.

To examine the effectiveness of WebCal usage, we compared WebCal Lecture
and Collaborative sections with non-WebCal Lecture and Collaborative sections, using
a 2 x 2 factorial design. (Note that the term non-WebCal sections does not include
sections that used Mapie.) Given that four different instructors taught these sections we
had to test for the impact of differences between the instructors. A one-way ANOVA
analysis was conducted where the independent variable was the instructor and the
dependent variable was evaluation of instruction. Recall that this latter variable depends
upon students’ class attendance and their global assessment of instruction. We found
no significant differences amongst the four instructors (F = 1.734, p=0.161).

Given this result, we used two-way ANOVA to study whether there are significant
differences between the means in various settings. In each of the results reported
below we tested whether the samples had equal variances (Levene's test of
homogeneity). The factors were: Mode of Instruction, with two levels (Lecture and
Collaborative) and WebCal Usage, with two levels (non-WebCal and WebCal). Below
we present only those results of the analysis that were statistically significant. First, we
will focus on the impact on measures of achievement, and then we will show how
WebCal Usage and Mode of Instruction impacted student motivation to study
mathemaiics,
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Table 7 below provides descriptive statistics, mean, standard deviation (St. Dev.)
and sample size in each cell, as well as totals for each (row, column) pair of the 2 x 2
factorial design, for the outcome variable arithmetic and algebraic skills. The last three
columns of the table show the two main effects and any interaction between Mode of
Instruction and WebCal Usage. (The tables below have a similar structure.) As one can
see in Table 7, there was no significant main effect, but there was a significant
interaction between Mode of Instruction and WebCal Usage (p = 0.009).

Table 7. Arithmetic and Aigebraic Skills

Mode of Instruction Descriptive Tests between subjects effects
Mean | 8t. Dev. | N |Source F Sig.
t ecture non-WebCal 0.93 0.801 67 |Mode of Instruction 0.233 0.630
WebCal 0.71 0.576| 64{WebCal Usage 0.000 0.986
Total 0.82 6.706| 131iMode of Instruction*WebCal Usage 6.895 0.009
Collaborative non-WebCal 0.67 0.377 35
WehCal 0.89 0.683f 72
Total 0.82 0.518} 107
Total non-WebCal 0.84 0.695} 102
WebCal 0.81 0.574] 136
Total 0.82 0.628] 238

& R Sguared = 0.029 {Adjusted R Sqguared = 0.017)
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The graph above shows that while WebCal students outperformed non-WebCal
in Lecture sections the non-WebCal students outperformed WebCal students in
Collaborative sections.
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Table 8 below provides results for the outcome variable, use of symbolic
language. The last three columns show that there was no significant difference between
students in different instructional settings. However, the interaction between Mode of
Instruction and WebCal Usage on the outcome variable concerning how students use
symbolic language is significant (p < 0.080).

Tahle 8. Use of Symbeolic Language

Mode of Instruction Descriptive Tests between subjects effects
Mean | St. Dev. | N {Source F Sig.

Leciure non-WehCal 0.81 0.518f 64|Mode of Instruction 0.861 0.354

WebCal 0.70 0.438 66|WebCal Usage 1.332 0.250

Totat 0.80 0.489| 130[Mode of Instruction*WebGal Usage 3.088 0.080
Collaborative inon-WebCal 0.85 0.620f 37

WebCal 0.90 0.640f 72

Total 0.88 0.630] 109
Totat non-WehCal 0.89 0.558| 101

WebCal 0.80 0.559| 138

Total 0.84 0.558{ 239

a R Squared = 0.026 (Adjusied R Squared = 0.014)
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The graph above shows that while WebCal students outperformed non-WebCal
in Lecture sections, non-WebCal students outperformed WebCal students in

Collaborative sections.
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Table 9 beiow provides results for the outcome variable, understanding of
graphs. From the table we see that students’ understanding of graphs differs across
sections. The last three columns show two significant main effects: both Mode of
Instruction and WebCal Usage impact significantly on students’ performance on
understanding of graphs (p = 0.034 and p < 0.001 respectively).

Table 9. Understanding of Graphs

Mede of Instruction Descriptive Tests between subjects effects
Mean | St. Dev. | N [Source F Sig.

leciure non-WebCal 470 0.680 62 |Maode of Instruction 4.525 0.034

WebCal 3.74 1.439 65 WebCal Usage 17.223 0,609

Total 4.21 1.229| 127|Mode of Instruction*WebCal Usage (.884 0.348
Collaborative jnon-WebCal 412 1.556 33

WebCal 3.51 1.649] 72

Total 3.70 1.837] 105
Total non-WebCal 4.50 1.086 95

WebCal 3.82 1.651] 137

Total 3.88 1.447| 232

a R Squared = 0,108 (Adjusted R Squared = 0.097)
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The graph above indicates that students in Collaborative sections outperformed
students in Lecture sections. It also shows that WebCal students outperformed
non-WebCal students.
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Table 10 below provides results for the outcome variable, use of algorithms.
From the table we can see that students’ use of algorithms differs across the sections.
The last three columns demonstrate that there was only one effect of significance
(p = 0.009), the interaction effect between Mode of Instruction and WebCal Usage.

Table 10, Use of Algorithm

Mode of lnstruction Descriptive Tests between subjects effects
Mean | St. Dev. j N |Source F Sig.

Lecture non-WebCal 0.93 0.801 67 |Mode of Instruction 0.233 0.630

WebCal 0.71 0.576{ 64{WebCal Usage 0.000 0.986

Total 0.82 0.706] 131 IMode of Instruction~WebCal Usage 6.885 0.009
Coliaborative |non-WebCal 0.87 0377} 35

\WebCal 0.89 0.563| 72

Total 0.82 0.518| 107
Total non-WebCal 0.84 £.695| 102

WebCal 0.81 0.574} 136

Total 0.82 0.628] 238

a R Squared = 0.029 (Adjusted R Squared = 0.017)

10

Estimaled Marginat Means

WabGal

B howencat

® B o2 vietto
Lo Lafnbemtve

Mooe of Instruction

The graph above indicates that in Lecture sections, WebCal students performed
betier in correctly using algorithms than non-WebCal students. It also shows that the
situation reversed itself in Collaborative sections, where non-WebCal students
demonstrated a higher performance in using algorithms.

There was neither any main effect nor an interaction effect for the outcome
variable understanding of concepts.



PAREA Project PA201-014 Final Report Page 48
Calculus & Computer-supported Cooperative Learning Dedic, H, et. al.

Table 11 below provides resulis for the outcome variable, correct answer. From
the table we see that students’ ability to arrive at the correct answer differs across
sections. The last three columns show one significant main effect: Mode of Instruction
impacts significantly on students’ ability to arrive at the correct answer (p < 0.001).

Table 11. Correct Answer

iMode of tnstruction Deseriptive Tests between subjects effects
Mean i St. Dev. | N |Source F Sig.

Lecture nan-WebCal 2,15 0.711 66 [Mode of Instruction 6.99 0.009

WebCal 2.19 1.373| 69|WebCal Usage 0.946 0.332

Total 217 1.097| 135[Mode of Instruction*WebCal Usage 0.386 0.535
Collaborative |non-WebCal 1.74 0.740{ 36

WebCal 1.94 0.668] 73

Total 1.87 0.605| 109
Total non-WebCal 2.00 0.744] 102

WebCal 2.08 1.074| 142

Total 2.04 0.248| 244

a R Squared = 0.029 {Adjusted R Squared = 0.017)
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The graph above indicates that students in Collaborative sections outperformed
students in Lecture sections in their ability to solve problems without making errors.
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Next we examined the differential effects of instructional settings on students’
motivation to study mathematics. There were no significant differences in change of any
of the motivational variables among students in different instructional settings with the
exception of one significant main effect (p = 0.002) on the change in dependence on a
structured environment. Table 12 below shows this result.

Table 12. The Change in Dependence/independence

Mode of Instruction Descriptive Tesis between subjects effecis
Mean | St. Dev. | N [Source F Sig.

Lecture non-WebCal 0.25 0.536 54iMode of Insiruction 0.015 0.903

WebCal -0.07 0.556] 63{WebCal Usage 9.834 0.002

Total 0.07 0.568] 117|Mode of instruction*WebCal Usage 2.000 0.159
Coliaborative jnen-WebCal 0.14 0.435 31

WebCal 0.02 0.437{ 70

Total 0.08 0.438] 101
Total non-WebCal 0.21 0.502 85

WebCal -0.03 0.497| 133

Total 0.07 0.511) 218

a B Sguared = 0.080 (Adjusted B Squared = 0.046)
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The graph above indicates that WebCal students became less dependent on a
structured environment during the course of the semester in comparison with
non-WebCal students who became more dependent.
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Ailthough the following results are unrelated io our hypotheses, we believe that
they are interesting to note. We found a significant main effect on changes in students’
attitudes towards computers as a learning tool (p = 0.047). (See Table 13 below.)

Table 13. The Changes in Students’ attitudes towards Computers

Mede of Instruction Descriptive Tests between subjects effects
Mean | St. Dev. | N }Source F Sig.
L ecture non-WebCal -0.12 0.515; 55|Mode of Instruction 3.989 0.047
WehCal -0.13 0.872; 63|WebCai Usage 0.0581 0.805
Total -0.13 0.724; 118{Mode af Instruction"WebCal Usage 0.027 0.870
Collaborative |non-WebCal 0.08 .425 3N
WehCal 0.05 C.680; 70
Total 0.06 6.611] 10
Toial non-WebCal -0.05 0.482 B8
WebhCal -0.04 0.779] 133
Total -0.04 0.678] 218

a R Squared = 0.018 (Adjusted R Squared = 0.005}

Eslimated Marginal Moans

WabCal

= Ha Wactat
——

.3 @ ves woLCat
Locture Catatomivm

Hode of Instrustion

We can see from the graph that while students in Lecture sections became more
positive about using computers in Lecture sections students in Collaborative sections
became more negative.
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studied mathematics (Study Hours), how they perceived the course workioad
(Workload) and whether they were confused when leaving a class room (Class
Feeling). Although these results were not significant, we include them in our discussion
because they may be related to changes in students’ attitudes fowards using computers
as learning tools. (See Tables 14, 15 and 16 below.)

Table 14. Study Hours

Page 51

a R Sguared = 0.054 (Adjusted R Sguared = 0.040)

The graph above indicates that WebCal students studied more hours than

non-WebCal students.
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Mode of Instruction Descriptive Tests between subjects efiects
Mean | St. Dev. | N |Source F Sig.

Lecture non-WebCal 4282} 3.8334 55|Mode of Instruction 2.973 0.086

WebCal 4935 54151 62 |WebCal Usage 9.100 (.003

Total 4.628] 4.6554| 117|Mode of instruction*WebCal Usage 3.523 0.062
Collaborative Inon-WebCal 2.217] 1.4544 30

WebCal 5.023] 3.3B36{ 65

Total 4.137] 3.1888] B85
Total non-WebCal 3.553| 3.1941 85

WebCal 4.980 4.4736| 127

Total 4.408| 4.0626| 212
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Table 15. The Workload
Mode of instruction Descriptive Tests between subjects effects
Mean | §t. Dev. | N [Source F Sig.

i.ecture non-WebCal 3.05 0.718] 57|Mode of Instruction 0.901 0.344

WebCal 2.67 0.803 63|WebCal Usage 28.748 0.000

Total 2.85 0.785] 120{Mode of Instruction*WebCal Usage 3.321 0.070
Collaborative |non-WebCal 3.35 0.915 31

WebCal 2.57 0.714 70

Total 2.83 0.857] 101
Total non-WebCal 3.16 0.801 B8

WebCal 262 0.756| 133

Total 2.83 0.817| 221

a R Squared = .121 (Adjusted R Squared = 0.109)

Consequently, WebCal students perceived the workload in Calculus to be
significantly heavier (in comparison to other science courses) than their peers in
non-WebCal classes who report that the workload in Calculus was lighter than the
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workload in other science classes (p < 0.001).
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In addition, students’ report on feelings of confusion they experienced in different
instructional settings.

Table 16. Class Feeling

Mode of Instruction Descriptive Teslis between subjects efiecls
Mean | St. Dev. | N [Source F Sig.

Lecture non-WebCai 2.33 1.138 57 iMode of [nstruction 0.717 (,398

WebCal 2.49 1.045 63 WebCal Usage 2,553 0.112

Total 2.42 1.089] 120|Mode of instruction*WebCal Usage 0.336 0.563
Coliaborative [non-WebCal 2.37 1.238] 32

WebCal 2.7 1.078] 70

Total 2.61 1.136| 102
Total non-WebCal 2.35 1.169 89

WebCal 2.61 1.065] 133

Total 2.50 1112} 222

a R Squared = 0.019 (Adjusted R Squared = 0.008)
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Although there are no significant differences between groups, the WebCal
students appear to be more confused than the non-WebGCal students.
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The effectiveness of Maple usage.

To examine the effectiveness of Maple usage, we compared Maple Lecture and
Collaborative sections with non-Maple Lecture and Collaborative sections, usinga 2 x 2
factorial design. (Note that the term non-Maple sections does not include sections that
used WebCal.) Given that three different instructors taught these sections, we tested
for the impact of differences between instructors. One-way ANOVA was conducted,
where the independent variable was the instructor and the dependent variable was
evaluation of instruction. Recall that this latter variable is based on students’ class
attendance and their global assessment of instruction. We found significant differences
amongst the instructors (F = 25.837, p < 0.001).

Given the above result, we needed to use a statistical method to correct for
differences between instructors. Consequently, we used two-way ANCOVA to study
whether there are significant differences between the means of outcome variabies in
various settings. The factors were: Mode of Instruction, with two levels (Lecture and
Collaborative) and Maple Usage, with two levels (non-Maple and Maple), with the
evaluation of instruction as the covariate. The resulis of the analysis presented below
consist only of those that were significant. First, we focus on the impact on our
measures of achievement, and then we show how Maple Usage and Mode of
instruction impact on student motivation to study mathematics.
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Table 17 below provides descriptive statistics, mean, standard deviation (St.
Dev.) and sample size in each cell, as well as totals for each (row, column) pair of the
2 x 2 factorial design, for the outcome variable arithmetic and algebraic skills. The last
three columns of the table show the two main effects and any interaction between
Mode of Instruction and Mapie Usage. (The tables below have a similar structure.) As
one can see in Table 17, there was one significant main effect: the students’
performance on arithmetic and algebraic skills in Lecture and Collaborative sections
was significantly different (p < 0.001). There was also a significant interaction between
Mode of Instruction and Maple Usage (p = 0.038).

Table 17. Arithmetic and Aigebraic Skilis

Mode of Instruction Descriptive Tests between subjects effects
Mean | St. Dev. | N |Source F Sig.

Lecture non-Maple 0.53 0.347 25|Mode of Instruction 20.237 0.000

Magpie 0.76 0.551% g|Maple Usage 0.053 0.818

Total 0.59 0.407¢  33|Mode of Instruction*Maple Usage 4.473 0.038
Collaboraiive [non-Maple 0.73 0.405} 26

Maple 0.52fy 0338 19

Total 0.64 0.388| 45
Total non-Maple 0.63 0.3871 51

Maple 0.59 0.415) 27

Total 0.62 0.395| 78

"7 Squared = 0.733 (Adjusted R Squared = 0.714)
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The graph above shows that while non-Maple students outperformed Maple
student in Lecture sections, Maple students outperformed non-Mapie students in
Coliaborative sections.
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Table 18 below provides results for the outcome variable, use of symbolic
language. The last three columns show that there were two significant main efiects:
students use of symbolic language in Lecture and Collaborative sections was
significantly different (p < 0.001); and, non-Maple students use of symbolic language
was significantly different (p < 0.052) from that of Maple students.

Table 18. Use of Symbolic Language

Mode of Instruction Descriptive Tests between subjects effects
Mean {St. Dev. | N [Source F Sig.

Lecture non-Maple 0.75 0.414 25|Mode of Instruction 14.886 0.000

Maple 0.26 0.231 5|Maple Usage 3.819 0.052

Total 0.67| 0.428{ 30jMode of Instruction*Maple Usage 1.140 ¢.288
Collaborative [non-Maple 0.93 0.677{ 27

Maple 0.80| 0.338] 19

Total 0.88| 0560 46
Total nan-Maple 0.84 0.568| 52

Maple 0.69 0.384| 24

Total 0.79 0.518| 78

°R Squared = 0.733 (Adjusted A Squared = 0.714)
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The graph above shows that Maple students outperform non-Maple students in
the use of symbolic language. In addition, students in Collaborative sections outperform
students in Lecture sections on this same measure of achievement.
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Table 19 below provides results for the outcome variable, understanding of
graphs. From the table we see that there was only one significant main effect: students’
performance on understanding of graphs in Lecture and in Collaborative sections was
significantly different {(p < 0.001).

Tabie 19. Undersianding of Graphs

Mode of Instruction Descriptive Tests batween subjects effects
Mean | St. Dev. | N |Source ' F Sig.

Lecture non-Mapie 4.48 1.036] 25|Mode of Instruction 67.616 0.000

Maple 5.00f 0.000 7iMaple Usage 0.041 0.840

Total 4.59 0.937 32| Mode of Instruction*Maple Usage 0.208 0.650
Collaborative jnon-Maple 4.08 1.640 24

Maple 4.45 1.301 19

Total 4,24 1.494| 43
Total non-Maple 4,29 1.365 45

Maple 4.60 1.1321 28

Total 4.39 1.28¢] 75

a A Sguared = 0.928 (Adjusted R Squared = 0.923)
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The graph above shows that students in Collaborative sections outperformed
students in Lecture sections.
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Table 20 below provides results for the outcome variable, use of algorithms.
From the table we see that there was only one significant main efiect: students’
performance in the usage of algorithms was significantly different (p < 0.001) in Lecture
and Coliaborative sections.

Table 20. Use of Algorithm

*R Squared = 0.936 (Adjusted R Squared = 0.932)
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Mode of Instruction Descriptive Tests between subjects effects
Mean | St. Dev. | N |Source F Sig.

Lecture non-Maple 2.83 0.698 25{Mode of instruction 74.278 0.000

Maple 2.96 0.901 10|Maple Usage 1.383 0.243

Total 2,87 0.750 35|Made of Instruction*Maple Usage 1.446 0.233
Cotllaboralive [non-Maple 238 0.829 27

Maple 3.03 0.625 19

Total 2.85 0.811 46
Total non-Maple 2.59 0.794 52

Maple 3.01 0.716 29

Toial 2.74 0.788] 81

The graph above indicates that non-Maple students in Collaborative sections
outperformed other students in correctly using algorithms. However, we note that this
effect was not significant.
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There were neither main effects nor an interaction effect in students’
understanding of concepts. However, we determined that students’ ability to obfain a
correct answer was different across instructional settings. Table 21 below provides
results for that outcome variable. From the table we see that there was only one
significant main effect: students’ ability to obtain a correct answer was significantly
different (p < 0.001) in Lecture and Collaborative sections.

Table 21. Correct Answer

Mode of Instruction Descriptive Tests between subjects effects
Mean | St. Dev.i N |Source F Sig.

Lecture non-Maple 2.21 0.698 25iMode of Instruction 50.330 0.000

Maple 276 0.880 10|Maple Usage 0.050 0.833

Total 2.37 0.781 35{Made of instruction*Maple Usage 2.130 0.149
Collaborative jnon-Maple 1.83 0.807| 27

Maple 1.98 0.714 19

Total 1.80| 0766 48
Total non-Maple 2.01 0.773 52

Maple 225 0848 29

[Total 2.10] 0.803] 81

‘R Squared = 0.900 (Adjusted R Squared = 0.893)
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The graph above indicates that students in Collaborative sections outperformed
students in Lecture sections in their ability to solve problems without making errors.
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Next we examined the differential effects of instructional settings on students’
motivation to study mathematics. There was a significant main effect (p = 0.044) on the
self-efficacy scale. Table 22 below shows this result.

Tahle 22. The Change in Self-efficacy

Mode of Instruction Descriptive Tests between subjects efiects
Mean | 8t. Dev. | N [Source F Sig.

Lecture non-Maple -0.11 0.455 25iMode of Instruction 0.894 0.347

Maple 0.11 0.393 11iMaple Usage 4,195 G.044

Total -0.04 0.443 36| Mode of Instruction*Maple Usage 0.347 0.558
Collaborative {non-Maple -0.19 0.403 26

Maple -0.13 0.383 19

Total -0.17 0.392{ 45
Total non-Maple -0.15 0.427 51

Maple -0.04 0.398{ 30

Toial -0.11 0.4181 81

"R Squared = 0.0B3 (Adjusted R Squared = 0.035)
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The graph above indicates that students’ self-efficacy did not change much, but
it also indicates that while non-Maple students became slightly more confident in
themselves, Maple students’ perception of seli-efficacy decreased over the course of
the semester.
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We did not find significant differences across instructional setting in attitudes
towards mathematics. However, we found a significant main effect on students’ value of
knowledge of mathematics (p = 0.009). Table 23 below gives this result.

Table 23. The change in students’ value of knowledge of mathematics

Mode of Instruction Descriptive Tests between subjects effects
Mean | St. Dev. | N |Source F Sig.

Lecture nan-Maple -0.15 0.403| 25|Mode of Instruction 0.208 0.651

Maple 0.12 0.508| 11|Mapie Usage 7.293 0.009

Total -0.07 0.448F 386|Mode of Instruction*Maple Usage 0.345 0.559
Collaborative |non-Maple -0.20 0.480 27

Mapie -0.13 0.384; 18

Total -0.17] 0.439] 46
Total non-Maple -0.18] 0.441 52

{Maple -0.04 0.441 30

[Total -0.13]  0.443] 82

R Sguared = 0.120 (Adjusied R Sguared = 0.0740)
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The graph above indicates that while non-Maple students valued knowledge of
mathematics more than they did at the beginning of the semester, Maple students
perception of the value of knowledge of mathematics decreased over the course of the
semester.
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We also determined that instructional settings had a significant impact on
students’ goal orientation. Table 24 below shows the result of this analysis.

Table 24, The Change in Students' Goal Orientation

Mode of Instruction Descriptive Tests between subjects effects
Mean | St. Dev. | N |Source F Sig.

Lecture {non-MapIe -0.31 0.393| 25|Made of Instruction 0.032 0.858

Maple 0.05 0.335| 11|Maple Usage 10.715 0.002

Total -0.20 0.408 36|Mode of Instruction*Maple Usage 2.832 0.097
Collaboraiive jnor-Maple -0.25 0.328 26

Maple -0.21 0.348 19

Total -0.23 0.332] 45
Total non-Maple -0.29 0.358 51

Maple -0.12 0.361 30

[Total -0.22]  0.365| 81

"K Squared = 0.157 (Adjusted B Sguared = 0.112)

Eslimaled KMarginal Means
[

——————
- Sompuier
s = —
B oo
-5 ® wamE
Lectre Cohetcrarve

Typa

The graph above indicates that non-Maple students became more mastery
oriented while Maple students became more performance oriented over the course of
the term. This main effect is significant (p = 0.009).
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Although the following results are unrelated to our hypotheses, we think that they
are interesting to note. There was a significant interaction effect on changes in
students’ attitudes towards computers as a learning tool (p = 0.037). Table 25 below
shows the result of this analysis.

Table 25. The Ghanges in Students’ attitudes towards Computers

[ Squared = 0.090 (Adjusted R Squared = 0.030)

Estimated Marginal Means of ChangeAtiGomp

Estimaled Marginsl Mpans

Compwar
o =

LTI

© yape

Lechum

Type

Cotabomtve

Mode of Instruction Descriptive Tests between subjects effects
Mean| St Dev. | N |Source F Sig.

tecture non-Maple 0.03 0.519 25|Mode of Instruction 1.368 0.261

Maple 0.24 0.405 11|Maple Usage 0.044 (0.835

Total 0.09 0.492 36iMode of Instruction™Mapie Usage 4.499 0.037
Collaborative jnon-Maple 0.08 0.445 26

Mapie -0.22 0.478 18

Total -0.06 0.475] 45
Total nan-Maple 0.04 0.478 a1

Maple -0.05 0.498{ 30

Total 0.01 0.485 81

The graph above indicates that Maple students became more negative about
using computers in Lecture sections and more positive about it in Collaborative
sections. Non-Maple students attitude was the same in both Lecture and Collaborative

seclions.
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mathematics (Study Hours), how they perceived the course workload (Warkload) and
whether they were confused when leaving a class room {Class Feeling). Although these
results were not significant, we include them in our discussion because they may be
related to changes in students’ attitudes towards using computers as learning tools.

Table 26. Study Hours

*R Squared = 0.069 {Adjusted R Squared = 0.0180)

Estimatad Marginal Means of HoursStudy

ES

40~

Estimatad Marginal Maans
i

5ng
‘5\
. ?

Computer

~ (S]]

9 japie

Type

Collaizimive

Made of instruction Descriptive Tests between subjects efiects
Mean 1St Dev. | N |Scurce F Sig.

Leciure non-Maple 4.32 5.800| 25{Mode of Instruction 1.641 0.204

Maple 4.85 3.253 10iMaple Usage 1.684 0.199

Total 4.50 5.161 35|Mode of Instruction*Maple Usage 0.296 0.588
Collaborative jnon-Maple 2.36 1.531 25

Maple 3.81 1.816 18

Total 2.87 1.788| 43
Total non-Maple 3.34 4314 50

Maple 4.21 2432 28

Total 3.65 3.754 78
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It should come as no surprise that there was a significant main effect of
instructional setting on how students compare their workload in Calculus to that of other
science courses. There was a significant difference between students in Lecture
sections and students in Collaborative sections (p = 0.042). Table 27 below shows the
result of this analysis.

Table 27. The Workload

Mode of Instruction Descriptive Tests beiween subjects effects
Mean | 5t. Dev. | N |Source F Sig.

Lecture nan-Maple 3.24 0.779 25{Mode of Instruction 4.261 0.042

Maple 2.64 0.674| 11|Maple Usage 1.133 0.291

Total .08 0.791 36|Mode of [nstruction*Maple Usage 0.B06 0.372
Collaborative [non-Mapie 3.37 0.926 27

Maple 3.00 0.840 18

Total 3.22 0.902| 45
Total non-Maple 3.3 0.853 52

Maple 286 0.788] 29

[Total 3.15] 0.853] 81

R Squared = 0.144 (Adjusted R Squared = (.0950)

Estimated Marginal Means of Workload

2.4

Estimatnd Marginal koans

Computar

Typs

The graph above indicates that students in Lecture sections thought the course
was heavier than students in Collaborative sections.
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There were no significant differences amongst the different instructional settings
in terms of students’ feelings of confusion upon exiting class. Table 28 below shows the

results of this analysis.

Table 28. Class Feeling

“H Squared = 0.296 (Adjusied R Squared = 0.260)

Estimated Marpinal Moans

Estirmated Marginal Means of ClassFegling

2§

T

26

2E

______ &
Compuler
L ¥ hacom

O prpre

Typa

Coliatxerates

Mode of Instruction Descriptive Tests between subjects affecls
Mean | St. Dev. | N |Source F Sig.

Leciure |n0n-MapIe 2.04 1.020 25|Mode of Instruction 0.914 0.342

Maple 2.82 1.401 11jMaple Usage 0.058 0.810

Total 2.28 1,186/ 36|Mode of Instruction*Mapte Usage 1.074 0.303
Collaboralive |non-Maple 2.33 1.209 27

Maple 2.95 0.211 19

Total 2.59 1.127] 46
Total non-Maple 2.19 1.121 52

Maple 2.90 1.094 30

Total 2.45 1.156] 82
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Discussion

The first hypothesis in this study concerns students’ performance and changes in
motivation to study mathematics. In terms of performance we hypothesized that
students using WebCal students would outperform non-WebCal students. From
amongst all six measures of achievement we have a significant difference between
results in WebCal and non-WebCal sections in only two measures, Understanding of
Algorithms and Understanding of Graphs. In the first of these two measures,
Understanding of Algorithms, the WebCal students out performed their counterparts
(p = 0.008). Knowledge of algorithms is both an essential component of mathematical
knowledge and a higher level cognitive skill. It involves using the conditional knowledge
of when/when not to use a given aigorithm to solve a problem. Further, students must
possess the ability to adapt such algorithms to suit the demands of particular problems.
Thus, we can say that there is a very high probability that WebCal students’
mathematical knowledge is higher than that of non-WebCal students, We aitribute this
highly significant effect to the impact of student tasks in WebCal sections (see
Appendix 8). Students were asked to explain and justify steps they used in problem
solving. In both groups, WebCal and non-WebCal, the scores of students in
Collaborative sections tended to be better than of those in Lecture sections (p = 0.064).
We understand this to mean that discussing with peers probably helps students to
understand algorithms, but using WebCal (versus not using WebCal) helps even more.

In the second significant measure, Understanding of Graphs, the WebCal
students again out performed their counterparts (p < 0.001). Note that the coded
student solutions for problems P13 and P14 (see Appendix 3) are two major
components of this measure. Most Calculus instructors would agree that these two
problems represent a synthesis of understanding of the concepls of limits and
derivatives. In addition, a student who successfully solves these two problems has to be
able to transfer the data that were gathered in a symbolic language, using an particuiar
set of algorithms, into a graphical perspective. Thus, it is reasonable to say that
Understanding of Graphs represent a high level of skill (algorithmic, synthesis of
concepts, and transfer of perspectives). Students who score high on this variable have
demonstrated a good conceptual understanding of the central concepts of Caiculus |.
Thus, highly significant results on this variable indicate that use of WebCal had a very
positive impact on students performance, as predicted in the hypothesis. In both
groups, WebCal and non-WebCal, the scores of Collaborative section students were
also significantly better (p = 0.034) than of those in Lecture sections. We understand
this to mean that both discussing with peers and using WebCal both help students to
understand graphs better.

From the results section above, we note that there was one further
significant main effect, namely the effect of Mode of Instruction on obtaining correct
answers. Here the Collaborative sections performed significantly better (p = 0.008) than
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the Lecture sections. There was no significant interaction between Mode of Instruction
and WebCal Usage. Thus, in terms of obtaining correct answers, the coliaborative
learning aspect of an instructional setting seems to be more important to student
success than WebCal Usage. Probably it is classroom discussion with peers that helps
students to learn to work through problems to the very end without errors. It is also
conceivable that having collaborated in the classroom, studenis become more likely to
collaborate outside of the classroom, and thus are learning from their peers in an
ongoing manner.

In addition to the above main effects, we note that in a Lecture setting students
in WebCal sections outperform, both on arithmetic/algebraic skills as well as in use of
symbolic notation, the comparable students in non-WebCal sections. This trend
reverses significantly (p = 0.009) for arithmetic/algebraic skill when we examine
Collaborative settings. Similar trends are observed in the case of use of symbolic
notation, although these trends are less significant (p = 0.080). Here it seems that
interaction between WebCal usage and Lecture mode of instruction have a positive
impact on students' performance in both arithmetic/algebraic skills and use of symbolic
notation. This result contradicts our hypothesis that there would be a positive interaction
between using WebCal and being in a Collaborative sections that would increase
students’ performance on these two variables.

It is important to say that although both arithmetic/algebraic skills and use of
symbolic language are necessary conditions for successful mathematical problem
solving, they represent a low level of skills. To use an analogy, these skills are to being
a mathematician as spelling is to being a writer. Both of these skills are largely gained
by individuals through repetition. In the WebCal sections collaborative tasks tended to
focus on reasoning, and practice shifting between perspectives (see Appendix 6),
whereas in the non-WebCal sections coliaborative tasks focussed more on traditional
problems that heavily involve arithmetic/algebra and use of symbolic notation. Thus, in
the non-WebCal sections, students in Collaborative settings were provided with
supervised practice in these skills, hence their performance was better than the
non-WebCal section students in Lecture settings. However, in the WebCal sections,
students in Collaborative settings were not provided with much practice at these skills,
and, understanding that the focus was on reasoning and shifting between perspectives,
they probably relied on the most skilled group member to carry out the simpler tasks,
leaving themselves under practised. We note that despite this result, overall there was
no significant difference between WebCal and non-Webcal sections on these two
measures of achievement so WebCal students performance in these areas did not
decline.

We anticipated that students’ motivation to study mathematics would improve as
result of using WebCal. We studied changes in student motivation (self-efficacy,
attitude towards mathematics and value of knowledge of mathematics) and found that
there were no significant differences between the changes of motivation amongst
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WebCal and non-WebCal students, nor were they any significant differences between
students in Lecture sections and in Collaborative sections, nor did we observe any
significant interaction effects. In some sense this is an unexpected result. Many studies
on collaborative learning have shown a positive impact of this instructional design on
student motivation (e.g., Lou et al., 2002).

Although we did not formulate any hypothesis concerning students’ preference
for a structured learning environment we tested whether there was a significant
difference between WebCal and non-WebCal students concerning change in this
variable. We found that WebCal students became more independent learners over the
course of the term, while non-WebCal students became more dependent learners. The
difference between these two results is highly significant, both statistically (p = 0.002)
and in its implications for the likelihood of such students becoming life-long learners.
Since creating life-long learners is an important goal in science education, or for that
matter in all educational fields, this is very good news.

Although we did not anticipate that WebCal usage would have any impact on
how hard studenis study, we noted when looking at the variable WebCal Usage that
students reported significantly more (p = 0.003) hours of study in sections that used
WebCal versus sections that didn’t. We further noted that there was a significant
interaction (p = 0.062) between the variable WebCal Usage and the variable Mode of
Instruction. That is, students in sections using WebCal reported similar numbers for
Hours of Study in Lecture sections versus Collaborative sections. However, students in
sections not using WebCal reported a drop in the Hours of Study from a Lecture section
to a Collaborative section.

When we looked at student perception of Workload (in comparison to other
science courses), our results were similar. That is, students reported a significantly
higher (p < 0.001) Workload for sections using Webcal versus sections that don't. in
addition, there was once again an interaction (p = 0.070) between the variable WebCal
Usage and the variable Mode of Instruction, but it seems reversed. That is, students in
sections using WebCal reported a similar Workload in Lecture sections versus
Collaborative sections. However, students in sections not using WebCal reported a
larger workload in Collaborative sections over Lecture sections. To put this briefly,
students in sections using WebCal reported working longer and perceived that they are
working harder than their non-WebCal counterparts, but WebCal students did not find
that working collaboratively changed their workload, while non-WebCal students did.

Note that none of the results that are discussed below were significant, however
they are sufficiently interesting to warrant discussion. Students generally tended to be
less confused when leaving class in Lecture sections versus Collaborative sections.
This makes sense in that a lecture consists of a teacher, having organized her thoughts
in a particular area, presenting those organized thoughts. However, collaborative group
work involves students discussing ideas with other students and/or with teachers, and
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so students have had to confront and often not fully resolve many questions. We also
noted that WebCal sections report more confusion than non-WebCal sections, and
again this would seem to be a natural result of students frequently doing in-class
explorations and confronting but not fully resolving many questions. Conceptual change
theory (Posner et al, 1982) posits that cognitive dissonance is one of the cognitive
conditions required for achieving conceptual change. However, Redish (Redish, 2003)
points out that for some students such dissonance may make them feel incompetent,
thus decreasing their motivation, which in turn may lead to lower performance. We can
relate this finding to changes in students’ atlitudes towards computers. Students in
Lecture sections generally improved their attitude towards using computers, while
students' positive attitude towards computers declined in Collaborative sections

(p = 0.047). It is possible that this decline is related to frustrations WebCal students
may have experienced.

The third hypothesis in this study proposes that students using Mapie in
Collaborative Mode of Instruction sections will outperform students using Maple in
Lecture Mode of Instruction sections as well as students who did not use Maple
materials in either Lecture Mode of Instruction or Collaborative Mode of Instruction
sections. There are no significant differences between the results in Maple sections
versus the results in non-Maple sections in all but one measure of performance. Maple
students significantly outperformed non-Maple students in their use of symbolic notation
(p = 0.052). This result is most likely an indication that working with Maple focuses
students attention on the syntax of Maple's mathematical/computer language and this
in turn transfers to significantly better use of mathematical symbolic language.
Appropriate use of symbolic language

In addition, there is a significant interaction between Maple and Mode of
Instruction {p = 0.038) on the arithmetic/algebraic skill subscale. While students in
non-Maple Lecture sections outperform students in Maple lecture sections, this trend
reverses for students in Collaborative sections. Perhaps this is because in the
non-Maple Lecture sections, the students watch the teacher perform arithmetic/algebra
on the board more frequently than in Maple Lecture sections, where the teacher uses
Maple fo avoid some of this work.

The impact of Maple usage on student motivation merits further investigation.
The results indicate that both students’ self-efficacy in mathematics and their perception
of the value of mathematics in their future decreased over the course of the semester.
These resulis may be related to the fact that Maple V version 5.1 was used in the
course. This version of Maple is rather difficult to master and hence it is likely that many
students had difficulties with it. That is, the awkwardness of Maple's interface probably
caused such students to feel less competent and confident in their studies of Calculus.
We note that Maple students became more performance oriented learners over the
course of the term. This finding supports our conjecture. Students who were struggling
with the interface may have abandoned an effort to master Calculus. At the end all they
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cared about were their grades. It is important to collect more data to determine both
why students felt that way and how the instruction should be modified 1o help students.
Student motivation to study mathematics impacts on their future success. it may also
have a serious impact on students' choice of a future career because the likelihood of
them continuing to take courses in mathematics has decreased.

We note that when looking at the variable Maple Usage, there is no significant
difference for Hours of Study or Workioad. Further, when looking at the variable Mode
of Instruction, there is no significant difference for Hours of Study. However, the
students in Collaborative sections perceive that they have a significantly lighter
(p = 0.042) workload than their counterparts in Lecture sections. We note that there isa
similar trend in the Hours of Study, but it is not significant. Also, although it is not
significant for either of the dependent variables, we note that students in Maple sections
report studying longer and perceive that they have a heavier workload. This trend is
similar to one noted above for students in WebCal sections.

There are no significant results involving the variable feelings of confusion but
we observe an interesting trend. Students in Maple sections generally tended to be
more confused when leaving classes in Lecture sections than in Collaborative sections,
while students in non-Maple sections appear to have equivalent feelings of confusion
whether in Lecture or Collaborative sections. Given that group activities were limited to
eight classes per semester, Maple and non-Maple sections, this latter result makes
more sense. That is, whether a section was Lecture or Collaborative, most of the time
teachers were presenting thoughts that they had previously organized, and so the
feelings of confusion should be the same. However, in Maple sections the teacher used
Maple about 15% of the time to explain or demonstrate concepts, with this in addition to
the eight student Maple tasks, done either individually or collaboratively. We note that
students’ attitude towards using computers as a learning tool became more positive in
Maple Collaborative sections, while students’ attitude towards using computers as a
learning tool became more negative over the course of the semester in Maple Lecture
sections. This result is statistically significant (p = 0.037). We speculate that
collaborative group work with Maple increased students’ familiarity, hence comfort level,
with Maple, and so these students found classroom explanations involving Maple
helpful in increasing their understanding. However, since the version of Maple used,
Maple V version 5.1, is not particularly user friendly, students must truly master a
complex syntax if they are to avoid frustrating errors, Thus, students working
individually on the eight Mapie labs probably never reached the same comfort level with
the software as students working in groups. Consequently, they would have felt that
using Maple to explain concepts was confusing, not helpful.

We note that we did not have any significant differences on the variable
Understanding of Concepts. This is largely due to insufficient data. As we stated earlier
we had to exclude a large number of problems from coding because instructors did not
follow the research protocol when including these problems in examinations. In
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addition, as we also stated earlier, the initial set of twenty one problems was negotiated
as a set of problems that all instructors were willing to use in their examinations.
Researchers attempted to include in the set a number of problems that might have
probed students’ conceptual understanding at greater depth. Many of these suggested
problem included requiring students’ to write explanations. Unfortunately, some of the
instructors who participated in the project rejected such problems because they felt that
their students would not be adequately prepared to answer them. This is an issue that
many classroom studies have to deal with. Usually the focus of an educational
innovation is to change student learning, either by improving performance in what is
currently learned or changing the depth or very nature of what is learned. In the latter
case, the outcome of such change cannot be tested using an experimental/control
design of research because teachers of control sections will not test students in areas
that they are not attempting to teach and do not believe students capable of mastering.
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Conclusion

In conclusion, this research has demonstrated that using WebCal has an overall
positive impact on student learning of Calculus. In some areas this impact is clearly
positive, while in other areas there is no significant impact. A commonly voiced concern
among mathematics instructors is that integrating the use of computers into
mathematics education will have a negative impact on students’ acquisition of basic
skills. On the other hand, proponents of the use of computers often focus on the
benefits of such use on student learning. This research project contributed {o this
ongoing debate.

The fact that WebCal students did just as well as non-WebCal students on skill
tasks (arithmetic/algebraic and use of symbolic language) should satisfy those people
concerned with the potential “loss of skills”. At the same time, the fact that WebCal
students outperformed their counterparts on some higher level skills should convince
some instructors to incorporate some or all of the instructional design characteristics of
our WebCal implementation. These results are somewhat less convinging in terms of
Maple usage. This study also demonstrated the importance of including collaborative
learning strategies alongside the incorporation of the use of technology in instructional
designs. While using WebCal improved student understanding of graphs (a higher level
skill), the students in coliaborative sections were more capable of solving problems
without making errors. Finally, this study also demonstrated that students need, and
then benefit, when frequent elaborative feedback is provided during the learning
process. We have also shown that the provision of individual elaborative feedback while
students are learning is feasible in a computer laboratory while it is practically
impossible in traditional classrooms.

Numerous research issues impacted on this quasi-experimental study. Not only
is it impossible to randomly assign participants into treatments, but it is also extremely
difficult to conirol the number of participants in each treatment. We began with the
assumption that Calculus | classes have an average of forty students. We gathered
data from both Fall 2001 and Fall 2002 to increase the number of students in each
treatment. However, student enroliment in one of our treatments was low in both
semesters, and therefore the number of participants per cell was not the same across
the treatments, leading to a large decrease in statistical power. Because of this problem
we could not investigate some of the questions that we had originally planned when
designing this experiment.

We have found that students reported working on average 20% more study
hours in WebCal sections than in non-WebCal sections. When considering the time
spent by the instructors preparing to teach Calculus using WebCal we suspect that they
also felt that they worked much harder. We did not collect any data on these issues but
it seems worth further investigation. While it is well known that “time on task” is the most
important factor in learning, a too heavy workload may also discourage students from
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taking courses that integrate technology. We anticipate that this issue of both teacher
and student workload is apt to influence how and whether technology will be used in
CEGEP mathematics classrooms in the near future. To investigate this issue one needs
to focus on two aspects: transparency and ease of use of technology; and, the need to
develop student tasks that are specific to technology based settings and different from
those normally used by mathematics instructors. Both of these aspects appear to have
played a role in the Maple implementation. We also have anecdotal evidence that some
students were frustrated with LiveMath. (During the period of the research project the
ownership of this software changed hands and Microsoft changed the plugin
architecture of its browser, Internet Explorer. As a result, maintenance of the free
LiveMath plugin deteriorated to the point that some students never managed to be able
to install it at home, a clear discouragement to them learning through experimentation).
Since site licensing of the current version of Maple, Maple 9.xx, has now been offered
to CEGEPs, and this version allows instructors to create self-standing Java applets with
custom interfaces, perhaps student difficulties can be addressed in the near future. We
certainly plan to investigate these issues in future research and development projects.
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Abstract

In this research we have studied feedback and how it affects student
performance in discovery learning instructional settings enhanced by computer
simulations. We examined two aspects of feedback: timing - whether feedback is
provided during or only after learning activities; and type, specifically “single-try”
elaborative feedback versus “multiple-try” elaborative feedback. We have found that:
average students improve their verbal reasoning and graphical skills when exposed to
“single-try” elaborative feedback that is provided during experimentation with
simulations; failing students make gains only in their verbal reasoning; and, feedback
has no effect on the performance of high achievers,

Keywords: mathematics education, post-secondary education; feedback; computer
simulations

Introduction

A report by Hodgson [1] sounded an alarm among mathematics instructors. The
findings indicated that students in traditional lecture-based courses develop a narrow
algebraic perspective of concepts while it is known that experts move fluidly between
the verbal, graphical, numerical and algebraic perspectives in solving problems. In
lecture-based courses teachers indeed do model verbal reasoning for the benefit of
studenis, but since the students are judged predominantly on the basis of symbolic
work, students do not adequately learn to reason in words. Graphical and numerical
activities are often neglected in lectures because they are tiresome and time
consuming, so students are often unable o reason in those terms as well.

This is an intact version of a research paper that has been aiready published (Dedic &
Rosenfield, 2003).
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Many attempts to improve students' conceptual understanding of mathematics
involve instructional designs that use discovery learning with computer simulations,
often in combination with cooperative learning. These designs are based on a
constructivist perspective of learning through active exploration of concepts. Working
with peers while experimenting with simulations can provide an environment in which all
four perspectives may be exercised. Computer simulations allow learners to generate a
large number of "instances" of a phenomenon, from both a graphical and numerical
perspective, in a short period of time. Papert [2] proposed that when students
experience a phenomenon sufficiently often they begin to see a pattern. This allows
them to internally generate a rule explaining the phenomenon (hypothesize). Once a
hypothesis has been formed, further use of simulations facilitate its testing. The
problem is that students often do not know how to experiment [3]. This may explain why
research to date has not been able to convincingly demonstrate that student
achievement in courses that use these instructional settings is significantly better than
student achievement in traditional courses.

In their review of effectiveness of discovery learning with simulations, de Jong
and van Joolingen [4] describe four categories of skills that learners need to possess in
order to benefit from discovery learning. Students need to be able to: generate a
hypothesis; design experiments to test it; interpret experimental data; and regulate the
discovery process. In a qualitative study of student perceptions of their learning through
discovery with computer simulations, we interviewed nine students over one semester
in a course on Differential Calculus [5]. We found among other things that students had
difficulty remembering and interpreting graphical data generated via simulation. Thus,
their ability to formulate and test hypotheses was compromised [4].

There may be other reasons why learning with computer simulations may not
improve learning outcomes e.g., their motivation may be affected because they may
miss the feedback provided by teachers. Learners may not benefit from work with
simulations because they concentrate on the completion of an activity ("product
orientation"), as opposed to focussing and reflecting on the underlying principles
("process orientation"} [6).

A number of recent studies have shown that when students are helped in
developing these inquiry skills, then discovery learning with computer simulations is
successful (e.g., [7], [8)). In their study in physics education, Rieber et al. [6] found that
providing elaborative feedback with simulations is more effective than experimentation
with simulations alone. They speculated that feedback helps students to focus their
attention away from the seductive details of routine computation towards more difficult
cognitive activities such as hypothesis formulation and testing. Alternatively, in this
study feedback provided during student experimentation with simulations may have
operated just as the learning theories predict. Reviews of studies have demonstrated
that immediate and frequent feedback improves learning (e.g., [9], [10]).
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The literature on distance learning environments shows that feelings of isolation
and the absence of the kind of feedback often obtained through a smile or a nod in
traditional classrooms leads to failure. Despite feedback in the form of grades, students
feel isolated and uncertain about their learning when working with computer simulation
in Calculus{5). Recent improvements in technology make it possible to provide
feedback on studenis' screens while they are experimenting with simulations. This may
lessen the need for teacher generated feedback. It may also help seli-regulated
learners to monitor their progress [11], and it may also reassure uncertain students that
they are learning while they experiment. Incorporating such formative feedback into
computer simulations may be effective for a number of other reasons. First, it may
guide cognitive activities during which knowledge is accreted, tuned, and restructured
[12). In lecture-based courses feedback is usually provided through summative
evaluation after learning takes place. Since the focus of such feedback is on the
product of learning it may fail to guide the process of learning. Secondly, it may benefit
students by helping them to focus on hypothesis generation and testing, as well as on
improving their skills in experimentation.

The objective of this study was to evaluate an instructional design that promotes
the development of graphical and verbal perspectives on central concepts of Calculus.
We hypothesized that students who receive elaborative feedback while they experiment
with simulations will perform better on graphical and verbal tasks then those students
who receive the elaborative feedback only after the learning activity. We also wanted to
investigate which type of feedback is more efficient in promoting the development of
verbal and graphical perspectives of mathematical concepts.

Methodology

Instructional Context:

The experiment was carried out in a college level course in Differential Calculus.
On-line course materials, WebCal, which inculcate the "Rule of Four", namely that
students need to develop an understanding and linkage between four perspectives on
any mathematical concept (symbolic, numeric, graphical and verbal) were used in
addition to a textbook. Classes were held in a computer laboratory with two students
per computer. Each lesson consisted of a series short lecture presentations, which
included computer simulations as demonstrations of concepts presented, interspersed
with student driven experimentation via simulations. For example, in one of the
simulations students are meant to observe a tangent fine move from left to right along
the graph of a function and are expected to make verbal predictions about the graph of
the derivative of the function.

Intervention Structure:

For the purposes of this intervention two classes were each divided into two
groups so that each student worked alone on their own computer. A 80-minute lesson
on the relationship between 7 (x), f‘(x) and f “(x) began with a 20-minute instructor
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explanation, structured around an animated simulation. Students then worked
individually for 25 minutes on each of two computer simulations. The first simulation
focussed on how to analyse a given f(x) graph so as to predict the shape of a graph of
f'{x), while the second one focussed on how to analyse a given f'(x) graph so as o
predict the shape of a graph of f(x). During each simuiation two formative pop-up
quizzes would appear on the screen (except for control group students. The first one
was timed to pop-up seven minutes after the individual student began to work, and the
second one after fifteen minutes. The individual work session was folliowed by a short
(15-minute) formative paper-based quiz designed to help students to self-assess their
mastery of this topic. Students then had two days to complete an assignment on this
topic, with the solution for this assignment posted on-line immediately after the
submission time. One week after the lesson, as a post-test, a summative quiz was
administered during regular class time.

Intervention Materials (embedded formative quizzes):

Feedback research shows that elaborate feedback is generally found to be more
effective than other simpler forms of feedback such as "right" or "wrong" or "correct
answer is ..." {[9], [13], [14]). Another characterization of feedback is based on the
number of chances that studenis are given to respond correctly {o a question. Reports
on the effectiveness of "answer-until-correct', or its variant, "multiple-try feedback", are
mixed [15]. However, Clariana’s review [14] of the literature reveals a number of studies
in which the effectiveness of “multiple-try-feedback" is found to be superior to simple
feedback. Learner frustration with "multiple-try-feedback” is posited by Clariana [14] as
an explanation for its ineffectiveness when used with low performing students, while
high performing students have been shown to prefer it. But a recent study shows that
"multiple-try-feedback", when combined with elaborative feedback, can be more
effective than “single-try-feedback” [18].

Based on this body of knowledge the conditions regulating feedback were as
follows: there were two settings for the timing of elaborative feedback in this study. All
students were given feedback during the formative paper-based quiz at the end of the
lesson (via an associated pop-up question); some students were also given feedback
during the period of experimentation prior to the end of lesson quiz (via two pairs of
pop-up quizzes). in addition, there were two types of feedback in this study. Some
students were given a single opportunity {“single-try- feedback” condition) to answer
correctly, with an incorrect answer eliciting feedback that explained the correct answer.
Other students were given two opportunities {“multiple-try-feedback” condition) to arrive
at the correct answer. In this case a first incorrect answer elicited feedback explaining
presumed reasoning error(s) associated with their incorrect response, foliowed by an
invitation to try again. If a second incorrect answer was given, then the correct answer,
complete with explanation, was presented.

To illustrate the nature of the questions and the feedback provided, below there
is one question from a pop-up quiz, along with the response given 1o the correct
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answer, and {

The four s

or one of the incorrect answers.

tatements a ... d below describe relationships between the functions fand [’ that we use

when we sketch a graph of £/, given one of f. One or more of these statements may be false.
Read each statement carefully and decide whether or not it is true or false. Then click the button
beside the answer that agrees with your evaluation of the truth/falsehood of all four statements.

a. Slapes of tangent fines 1o a graph of f are y-coordinates in a graph of f*.

D,

if the stepe of a tangent line to a graph of fis positive at x= g, then the slope of
a tangent line to the graph of {’ at the same x will be positive.

c. Slopes of langent lines to a graph of f ' are negalive throughout any x - interval
where a graph of fis concave down.
d: At & value of x where a graph of fchanges concavity, the slope of a tangent line

to a graph of £ will be zero.

all of the above are true

a, b and c are true, d is false

b, c and d are {rue, a is false

a and c are true, b and d are false

. a, ¢ and d are true, b is false

Answer for 5 (which is correct): The statements a, ¢ and d are true. The statement b is the
anly false statement. The slope of the tangent line to a graph of fdoes not tell us anything
about the slope of a tangent line to & graph of 7, but as a correclly states, it tells us about
a y-coordinate value of the graph of f*. The sign of the slope of a tangent line o a graph
of f* graph is indicated by the concavity of the fgraph. Please continue fo work with the
LiveMath inserf to increase your understanding of the relationships between f, /" and £,

01 00 10

Answer for 2 (which is not correct): Your answer is incorrect because statement dis true.
On an interval where a graph of fis concave up, we nolice that the slopes of tangent lines
to that graph increase in value as we mave across the graph, left to right. But slopes of
tangent lines fo a graph of fare actually y-coordinates of a graph of f*, so on that same
interval a graph of {/ is increasing. Similarly, on an interval where a graph of fis concave
down, we notice that the stopes of tangent lines to that graph decrease in value as we
move across the graph, eft to right, and so a graph of f' is decreasing. Thus, at a point
where a graph of fchanges concavity, the slopes of tangent lines to that graph change
fram increasing to decreasing (or from decreasing to increasing), which means that a
graph of f* changes direction, so slopes of that graph of f* change sign. According io the
Intermediate Value Theorem such changes in sign only occur at a zero of slope. Before
indicating a different choice, please try to re-evaluale the truth/falsehood of each
statement.

The two pop-up quizzes that were displayed on the screen while students
experimented had different objectives. The first quiz focussed on the process of
experimentation with simulation. it aimed to help students who did not have the
appropriate inquiry skills or to reassure those who were proceeding appropriately but

were uncertai

n. The second one focussed on the features of graphs that students must

be able to recognize in order to accomplish the task. It aimed to help students who

could not inte

Participants:

rpret graphical data collected in their experiments.

One hundred and eight first year college students attending a junior college
participated in this experiment. All students were registered in a Differential Calculus

course that is

compulsory in the pre-university Science Program.
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Design:

Based on prior performance (as measured by performance on mid-term class
tests) students were first grouped into three strata (n=36 in each strata). high achievers
(with grades better than 74%; median = 81%); average students (with grades between
60% and 74%; median = 67%) and failing students (with grades less than 60%; median
= 51%). Students in each of these three groups were then randomly assigned to one of
the four conditions: single try feedback in the formative quiz at the end of the lesson;
multiple try feedback in the formative quiz at the end of the lesson; single try feedback
both during the experimentation with the two simulations and in the formative quiz at the
end of the lesson; and, multiple try feedback both during the experimentation with the
two simulations and in the formative quiz at the end of the lesson. Consequently, there
were nine participants in each cell in this 3 x 2 x 2 design.

Student understanding of the relationship between f(x), f'(x) and 7" (x) was
assessed on the basis of their performance on a post-test quiz administered one week
after the lesson. This quiz consisted of a graph of a function f’(x). From the features of
the graph students were asked to sketch a graph of a function f(x) and to explain
verbally each step that they took in generating the graph of f (x). The two dependent
variables in this study are: GRAPH, measured by errors made in graphing; and,
VERBAL REASONING, measured by errors made in explanations. Each of these two
variables assesses student understanding of the relationship between f(x), f’{(x} and
f"(x), but from two different perspectives. Two coders independently coded the
appearance of graphs and verbal reasoning, and the agreement between their scores
was over 90%. In all cases of disagreement it was shown that one of the coders had
not used the coding schema appropriately.

Table 1
Ind. var. Description
PRIOR PERFORMANGE F (failing students), C (average students) and A (high
achievers)
TIMING OF THE FEEDBACK 0 (feedback was provided only in the formative quiz)

and 1 (feedback was provided both during the work
with two simulations and in the formative quiz)

TYPE OF THE FEEDBACK 0 (multiple-try feedback) and 1 (single try feedback)

Dep. var. Description

GRAPH 0 {a failure indicates one or more errors in the graph)
and 1 (a success indicates a correct graph)

VERBAL REASONING 0 (a failure indicating that the explanations were either

incomplete or incorrect or both) and 1 (a success
indicating a correct explanation of all steps in solving
the problem)
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We used categorical variables and logistic regression to analyse the data. Table
1 shows the variables used in this experiment.

RBesulis

The results show that 44 students (41% of the sample population) generated a
flawless graph. An even higher proportion of students (47 or 44% of the sample
population) produced a complete and correct verbal argument that guided their
graphing of f(x). A number of students reasoned correctly but failed to include every
step. For example, of the thirty-five students who were coded as having made exactly
one error, only nine actually made an error in their reasoning. Each of the remaining
twenty-six students failed to mention one step.

The frequency of success in both GRAPH and VERBAL REASONING is shown
on the chart below. It seems to suggest that student performance depends on PRIOR
PERFORMANCE. The logistic regression shown below suggests otherwise.

— - k)
o w (=]
T 1

FREQUENCY OF SUCCESS

g A

. : i
PRIOR PERFORMANCE
wa GRAPH = VERBAL REASONING

The only significant result of the logistic regression between each of the
independent variables and each of the dependent variables for the sample shows
students’ likelihood of success in VERBAL REASONING increases when the feedback
is given during the experimentation as well as on the formative quiz (a positive
coefficient of 0.752). The t-ratio is 1.904 and chi-square of 3.692 is significant at 0.055
level. No other model significantly improved this result. There is no effect of either
TIMING OF FEEDBACK or TYPE OF FEEDBACK on likelihood of success in GRAPH.

We did not wish to pursue this approach much further, since it would force the
introduction of more terms than we really needed. Since prior performance is
introduced essentially as a control device (that is we are more interested in eliminating
its effect than in actually studying it) we decided that a simpler and more efficient way of
controlling for this variable is to study each performance group separately. That is we
split the sample into three groups according to their prior performance and investigated
the effects of TIMING OF FEEDBACK and the TYPE OF FEEDBACK for these groups
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separately. We found that neither the timing of the feedback nor the type of feedback
increased the likelihood of success amongst the high achievers. The results of the
logistic regression for average students is shown in Table 2 below.

The results from Model 1 indicate that the likelihood of correct verbal reasoning
increases when feedback is given during the experimentation. The coefficient on the
timing of feedback variable has a t-ratio equal to 1.619 which is significant at 0.10 level.
The model correctly predicts 67% of responses. Model 2 includes an additional
explanatory variable—type of feedback. Mode! 2 is superior to Model 1 in terms of the
overall significance level (chi-square statistic of 10.489 is significant at 0.005 level). The
results show that the likelihood of correct verbal reasoning amongst average students
increases when a “single-try” feedback is given during the experimentation,

Table 2. Logistic Regression results for average students
Dependent Variable: VERBAL REASONING

Model 1 Model 2
Variable coefficient {-ratio coefficient t-ratio
ICONSTANT -1.322 -2.349 -2.934 -2.918
TIMING OF 1.204* 1.619 1.880" 1.986
IFEEDBACK
TYPE OF 2.335™" 2.449
FEEDBACK
todel Chi- 2.764[1] 10,488[2]
square
Fe correct 67% 67%
prediction
IAsterisk indicates statistical significance: * at 0.10 level; ™ at 0.05 level; and * at 0.01
evel; [df]

The results of logistic regression for average students also indicate that TIMING
OF FEEDBACK increases the likelihood of success in GRAPH (a positive coefiicient of
1.558). The t-ratio is 1.687 and chi-square of 3.163 is significant at 0.075 level. This
effect has a low p-value and it may or may not be a real effect.

The results of logistic regression for failing students show that the likelihood of
correct verbal reasoning increases with feedback given during the experimentation (a
positive coefficient of 1.649). The t-ratio 2.271 (p-level 0.023) and chi-square statistic
5.611 indicate the model is significant at 0.018 level. The addition of the other
explanatory variable {TYPE OF FEEDBACK) did not improve the model. No effect on
likelihood of success in GRAPH was shown to be due to either of the two independent
variables. Note that in these models, the interactions effects are not present. In fact,
they were initially introduced in the model and subsequently eliminated when found
insignificant. The present additive models are simpler and easier to interpret.
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Discussion

Feedback is recognized as an important element of learning and in this research
we have found that feedback plays an important role in the performance of average or
failing students of Calculus. Neither timing nor type of feedback had an effect on the
learning of high performing students. Thus, our ability to draw any conclusion from the
performance of high achieving students is limited. For example, we may speculate that
they proceeded through simulations quickly and thus did not experience “timed”
feedback. It would be interesting to collect data that might explain “no effect” among
high achievers.

The results show that average students improved their verbal reasoning
particularly when the feedback was a “single-try-feedback”. This result contributes to
the debate among feedback researchers whether “multiple-try-feedback” is effective. It
contradicts results obtained by Kramarski and Zeichner[16] who found that elaborative
“multiple-try-feedback” was effective. One possible explanation may be that the number
of tries in this experiment was limited to two. The second possible explanation may
have to do with the fact that the elaborative feedback provided on the first try attempted
to anticipate and clarify errors in reasoning. The example given earlier in this paper
shows that the elaborative feedback used involved long and complex verbal reasoning.
It is conceivable that such feedback confused certain students because they did not
understand the explanation of their reasoning error. Alternatively, it is also possible that
our feedback did not make sense to them because it did not address the reasoning
error that they made. It would be interesting 1o investigate these possibilities in the
future by allowing more than two tries and by experimenting with the format of
ieedback. One particular option of interest might be to have a simple animation
accompany the text of the elaborative feedback. We note that since the number of tries
was limited to two, it does not seem to be probable that the reason for the preference
for a single-try-feedback is the frustration with repeated tries as Clariana [14] suggests.

The likelinood of success in verbal reasoning increased for both the average and
failing students when feedback was provided during learning. This is consistent with
cognitive theories as well as with the point of view of self-regulation. This kind of
feedback focusses on the process of learning and informs students when the learning
goal has not been reached. This leads self-regulating students to take corrective
measures to close the gap between the current state of knowledge and the goal state
according to our model of effective feedback [17]. Unfortunately, the frequency of
feedback provides an alternative explanation. Students who received feedback during
experimentation had more feedback than those who received feedback only on the
formative quiz. It would be interesting to design an experiment in the laboratory and test
which of these two alternative explanations is more likely.

The likelihood of success in graphing among average students increases when
the feedback is provided during experimentation. The frequency of instances of perfect
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graphs amongst average students (15 out of 36 graphs) is nearly the same as the
frequency of perfect graphs amongst high achievers (17 out of 36). This resultis
surprising given the 14% gap between the median grades of these two groups of
students. On the other hand, the feedback during the experimentation with simulations
did not significantly increase the likelihood of success amongst failing students. We
found many cases of students who had perfect verbal scores with graphs that had
errors. For example, they often reasoned that the slope of a graph at a stationary point
should be zero but would fail to draw a zero siope graph at such a point. Two particular
concepts, that of inflection point and that of stationary point, were the ones where it
most frequently happened that the student would correctly identify an instance in verbal
arguments, but make an error at the corresponding point on the graph. This may
indicate that student understanding of these concepts is weak. But it may also be that
these are students who, while strong in verbal skills are unable to reason in spatial
terms. Consequently, their ability to process graphical information may be less
developed than their ability to argue and reason verbally. (They just don't see it.) Lastly,
we may attribute this result to students’ epistemological beliefs. They may dismiss the
inconsistency believing that verbal and graphical perspectives can lead to mutually
inconsistent results; or they may not feel the need to search for and resolve the
dissonance between data generated by the two perspectives.

Conclusion

Success in mathematics is the gateway to careers in the sciences, and
increasingly in other fields such as economics, social sciences and commerce.
Graduates of Calculus courses are expected to use their knowledge to solve problems.
This research shows that by providing elaborative feedback during student
experimentation with simulations many weaker students acquire skills that experts
have. It requires further research to explain how and why this is happening. On the
other hand, mathematics instructors may already benefit, having an indication that
“single-try-feedback” provided during simulations improves verbal reasoning and to
some extent graphical reasoning. Since the web abounds with simulations freely
available to instructors, one may hope that students will soon have the opportunity to
more easily learn the skilis that they need.
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Student Consent Form

Learning Calculus

Directions to the Student

A team of Mathematics and Science instructors at Champlain College, Dawson College
and Vanier College is doing research to investigate the effectiveness of different learming
environments for Calculus. Your Calculus instructor has agreed to allow this team to gather
information through questionnaires and selected questions/solutions on tests, and if your class
uses computers, through recorded log files. This study is being done in collaboration with
members of the Centre for the Study of Learning and Performance at Concordia University. All
data from this study will be kept strictlv confidential. This data, and your decision Lo assist in
this effort (or not), will in no wav influence your grade in this or any other course.

If you are interested in more information, or the results of this research, please contact
Helena Dedic, principal investigator, at the Vanier College Science Centre, E512, 744-7016.

I, the undersigned, consent to participate with the assurance that the data will be kept confidental
and that they in no way affect my grade in this or any other course. I understand that I have the
right to refuse to participate at any time, and that such refusal will also in no way affect my grade
in this or any other course. Further I understand that should I decide to participate at this time, 1
can subsequently change my mind by sending an e-mail to Helena Dedic at

dedich @ vaniercollege.qc.ca informing her of my decision. In such a circumstance, all data that I
have contributed will be withdrawn and my decision will also in no way affect my grade in this
or any other course.

PRINT NAME:

STUDENT #:

SIGNATURE:
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Pre-test Mathematics Questionnaire

This survey was designed by a research team at Champlain, Dawson and Vanier College. 1t is intended {o
identity factors that affect how people learn mathematics.

Please mark your answers on this questionnaire using pen or dark pencil. Make only one mark per item, with
{he exception of item #11 in the PEMOGRAPHIC INFORMATION section.

Remember that there are no right or wrong answers to these questions. Your answers should reflect what you
actually and honestly think.

Thank you for your cooperation.
DEMOGRAPHIC INFORMATION
1.  Gender (circie ane). Male Female
2. What year did you graduate from high school?
3. What was the language of instruction in mathematics and sciences al your high school?

English only French only Other

4.  What is your mather tongue? English French Other
5.  How many hours per week do you work for pay?
6. How many courses are you taking this term?
7. Qutside of the classroom, how many hours a week do you study mathematics?
8. Do you have a computer at home? Yes No
9. Do you have access 1o the Internet at home? Yes ‘ No
10. How often do you use computers? Circle the mast appropriate answer.
More than once a day Once a day More than once a week Once a week Once a month or less
11.  What de you use the computer for? Circle all appropriate answers.
E-mail  Word processing  Internet search  Learning about interesting subjecis ~ Graphing
Spreadshest Games  Programming  Downloading music  Chatting with friends

Other (specify):

12. Raie your compuier competence on a scale from 1 {no experiise) to 10 (expert):
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Pre-test Mathematics Questionnaire

| experience a "rush", an "AHA!" feeling when | finally get a new math concept.
a) always b) usually ¢) sometimes d) rarely e} never

Whaen it comes to math assignments, | prefer io

a) work completely by myself.

b) work mostly by myself with an occasional consultation with other siudents.

c) work by myself but [ consutt frequently with other students.

d) work mostly with other students, although [ still like fo do some parts by myseli.
e) do the whole thing with a group of students.

| get easily discouraged.
a) almost never b} rarely  c¢) sometimes d} quite often e) most of the time

Heredity determines most of a person's personality.
a) strongly agree  b) agree  ¢) neither agree nor disagree d) disagree  e) strongly disagree

| prefer a mathematics course that

a) reguires me to do only simpler tasks.

b) requires me to do only simpler or intermediate tasks.
¢) challenges me without pushing my fimits.

d) pushes my limits quite a bit.

g) really pushes my limits.

| will use the ideas that | learn in math in other courses.
a) strongly agree by agree  c) neither agree nor disagree d) disagree  e) strongly disagree

| dislike math.
a) strongly agree  b) agree ¢} neither agree nor disagree  d} disagree &) strongly disagree

| can do even the most difficult problems in the math texibook.
a) always p) usually c) sometimes d) rarely g) never

| learn best

a) when | study alone.

b} when | can first discuss a few things and then study alone.

¢) when | divide my time evenly between studying with friends and working alone.
d) when | study with my friends and only do review alone.

e) when | study with my {riends,

| prefer classes in which lectures are interrupted with hands-on activities where | am in control.
a) very characteristic of me

b) rather characteristic of me

¢) sumewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

Chance has a lot to do with being successful.
a) strongly agree  b) agree  c) neither agree nor disagree d) disagree  e) strongly disagree

Use of computers in courses makes classes more interesting.
a) strongly agree  b) agree  c) neither agree nor disagree d) disagree  e) strongly disagree

What is your opinion about solving math problems?

a) In my opinion it is ali about getting the answer.

b) In my opinion it is mostly about getting the answer,

c) In my opinion it is mostly about understanding the ideas used in the solution of the problem.
d) In my opinion it is all about understanding the ideas used in the solution of the problem.

e) | can't decide what | think.

When | am stressed, my mind goes blank.
a) almost never byrarely  ¢) sometimes d) quite often e) mosi of the time
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Pre-test Mathematics Questionnaire

| get easily frustrated when studying math.
a) strongly agree b} agree  ¢) neither agree nor disagree  d) disagree e} sirongly disagree

Mastery of basic math cencepts is a prerequisite for my future studies.
a) strongly agree b} agree  ¢) neither agree nor disagree  d) disagree  e) strangly disagree

If doing the hard problems did NOT guarantee me a good grade,

a) | would avoid them like the plague. ’

b) | would stick with the easier exercises.

¢ sometimes | would try them but [ would not persevere to the end.
d) | would always try them but | would not persevere to the end.

e} | would do them anyway.

I'm think 1 have a good knowledge of basic concepts in math.
a) very characteristic of me

b} rather characteristic of me

c) somewhat characteristic of me

d) rather uncharacteristic of me

e} very uncharacteristic of me

| resent revealing good ideas 1o other people in my group.
a) very characteristic of me

b) rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacteristic of me

g) very uncharacteristic of me

| learn best when

a) | explore on my own without the help of a teacher.

b) t explore on my own with a teacher around to help when | need it

¢) | learn the material from a teacher, then explore on my own.

d) | iearn the material from a teacher, then explore with a teacher around to help when 1 need it.
e) a ieacher explains everything to me,

i am uncomfortable with the idea of using computers to fearn.
a) very characteristic of me

b) rather characteristic of me

c) somewhat characteristic of me

d) rather uncharacteristic of me

g) very uncharacteristic of me

Successiul math students understand the material quickiy.
a) strongly agree  b)agree  c) neither agree nor disagree  d) disagree e} strongly disagree

Whatever plans | make, there is always something that will mess them up.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

[ am mos! satisfied when a math course

a) requires me to gain deep understanding of all of the concepts covered.

b) requires me to gain deep understanding of most of the concepts covered.

¢) requires me to gain deep understanding of some of the concepts covered.

d) requires me to get a good understanding of most of the concepts without going too deep.
e) requires me to get only & very basic understanding of the concepts.

When the siiualion changes, | adjust my plans.
a) almost never b) rarely  c¢) sometimes d) quite often e) most of the time

| think that knowledge of math is essential for my future success,
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree &) strongly disagree

[ am unsure that my grades in math courses will be good.
a) always b) usually ¢} sometimes d) rarely e) never
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Pre-ltest Mathematics Questionnaire

| find math intellectually stimulating.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree e) strongly disagree

in a typical group setting, | feel left oul.
a) always b) usually c¢) sometimes d) rarely g) never

| enjoy having tasks where

a) | decide by myself how to proceed.

b) | make a plan of how to proceed, and then check it with the teacher before carrying it out.
¢) the teacher outlines how to proceed and | provide the details.

d) the teacher provides step-by-step instructions.

@) ail | have 1o do is fill in the blanks.

if | could ] would aveid enrolling in & course in which | have to use computers.
a) strongly agree  b)agree  c) neither agree nor disagree  d) disagree e) strongly disagree

[ trust my judgement.
a) almost never byrarely  ¢) sometimes d) quite often e} most of the time

Being at the right place at the right time is essential for getting what you want in fife.
a) strongly agree  b) agree ) neither agree nor disagree  d) disagree &) strongly disagree

Knowledge of mathematics

a) depends entirely on the amount of effort one puts in to learning it.
b) depends mostly on the effort one puts in to learning it.

c) depends equally on effort and talent for mathematics.

d) depends mostly on one's talent for mathematics.

e) depends entirely on one’s talent for mathematics.

I get angry when | am faced with challenging math problems.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree &) strongly disagree

in my everyday experience, | will use the logical thinking that [ learned in math courses.
a) strongly agree  b)agree  c) neither agree nor disagree  d) disagree e} strongly disagree

When | don't understand ideas presented in mathematics courses,

a) it doesn't bother me at all. | only care about my grades.

b it bothers me a little but if my grades are already good 1 will not try to fix it.

it bothers me a lot but if my grades are already good 1 will not try to fix it.

it bothers me a lot. Even if my grades are already good 1 will try to fix it.

it bathers me a iot. Even if my grades are already good | will not stop until  have fixed it.

c
d
e

e e St et

| expect to understand even the most complex ideas presented by math teachers,
a) always b) usually c¢) sometimes d) rarely e} never

| need a pat on the shoulder in order to know that | have done well.
a) very characteristic of me

b) rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacieristic of me

g} very uncharacteristic of me

| like discussing ideas and solutions with other people.
a) very characteristic of me

b) rather characteristic of me

¢} somewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me
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Pre-test Mathematics Questionnaire

Teachers' ohjectives in solving math problems in class should be
a) entirely to demonstrate and to drill students' skills.

b) mainly to demonstrate and to drill students’ sKills.

c) mainly to enhance students' understanding of the theory.
d) entirely to enhance students' understanding of the theory.
e} | can't decide what | think.

Computers make communication with my teachers and classmates easier.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree  e) sirongly disagree

Intelligence is a given and cannot be trained or repressed.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

When | don't understand something in a math course,

a) | always keep working until | understand the concepts.

b) occasionally | stop working before | understand the concepts and | memorize the formulas instead.
c) | often stop working before | understand the concepts and | memorize the formulas instead.

d) very often | stop working before | understand the concepts and [ memorize the formulas instead.
g) | memorize the formulas and leave it at that.

| know where to find the information that | need.
a) almost never b) rarely  ¢) sometimes d) quite often &) most of the time

| can succeed in math,
a) always b) usually c) sometimes d) rarely e) never

Math is boring.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree ) strongly disagree

It is useful to work on math assignments in a group because we can help each other.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree e} strangly disagree

The skills | learn in mathematics courses are useless in everyday life activities.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree ) strongly disagree

When faced with a difficult problem in math | prefer to rely on my own resources to find the solution.
a) very characteristic of me

b) rather characteristic of me

c) somewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

Using computers to leam math is a wasie of time.
a) strongly agree  b) agree ¢} neither agree nor disagree  d) disagree e} strongly disagree

Making several unsuccessful attempts when solving math problems
a) is perfectly natural.

) is relatively normal.

) indicales & polential problem with student's ability to learn math.
) indicates that a student has a problem when it comes to math.

e) a clear sign of a student who is bad in math.

b
¢
d
If | successfully accompiish my task, it's because it was an easy one

a) strongly agree by agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

When a situation requires a change of plan or strategy, | feel confused or anxious.
a) almost never by rarely  ¢) sometimes d) quite often e} most of the time

| avoid taking opticnal math classes.
a) strongly agree  b) agree  c¢) neither agree nor disagree  d) disagree @) strengly disagree
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Pre-test Mathematics Questionnaire

When | am curious about an idea |

a) like to learn it even if it's very difficult to understand.

b) like to learn it even if it is somewhat difficult to understand.

c) kike to learn it only if it's reasonably easy to understand.

d) like to learn it only if it's very easy to undersiand.

e) forget about it quickly and don't attempt to gain understanding.

I expect to be one of the weak students in math classes.
a) always b) usually c) sometimes d) rarely e) never

Doing mathematics gives me satisfaction.
a) strongly agree  b) agree  c) neither agree nor disagree d) disagree &) strongly disagree

In a typical group setting, | feel intimidated by my more competent group-mates.
a) always b) usually c¢) sometimes d) rarely e) never

Math is

a) all about understanding general ideas.

b) mostly about understanding general ideas.

c) evenly divided between understanding general ideas and carrying out procedures step-by-step.
d) mostly about carrying out procedures step-by-step.

e) all about carrying out procedures step-by-step.

| get anxious when | don't get step-by-step instructions on how to accomplish & task.
a) very characteristic of me

b) rather characteristic of me

c) somewhat characteristic of me

d) rather uncharacteristic of me

g) very uncharacteristic of me

Computer-based instruction should be included in college level courses.
a) strongly agree  b) agree ¢ neither agree nor disagree  d} disagree &) strongly disagree

You cannot cheat your fate,
a) strongly agree b} agree  c) neither agree nor disagree  d) disagree e) strongly disagree

When presented with a math problem that | am not sure | will be able to finish,
a) I work on it until it is solved, no matter what.

b) I give it my best shot anyways, but move on eventually if it doesn't work out.
c) | try to solve it, but as soon as | get stuck | abandon the attempt.

d) | try to solve it only if the teacher forces me to.

e) | don't even try the problem.

When something ! want doesn't work out, | rapidly get back on my feet.
a) almost never b) rarely  ¢) sometimes d) quite often e) most of the time

When in a group setting, | feel comfortable speaking my mind.
a) always b) usually c) sometimes d) rarely e) naver

School success is mostly a result of one's socio-economic background. .
a) strongly agree  b) agree ¢ neither agree nor disagree o) disagree e strongly disagree

My solutions for math problems are correct.
a) always by usually c) sometimes d) rarely e} naver

I think that understanding concepts in mathematics is onty useful to mathematicians or people warking in
related fields.
a) strongly agree  b) agree  c) neither agree nor disagree d) disagree &) strongly disagree

Math is learned slowly by solving problems, learning from mistakes and figuring out the meaning of ideas.
a) strongly agree b)) agree ¢} neither agree nor disagree d) disagree @) strongly disagree
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Pre-test Mathematics Questionnaire

When | come across & difficult problem in mathematics | immediately seek my instructor's help.
a) very characteristic of me

b) rather characteristic of me

¢} somewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

Use of computers miakes learning math easier.
a) sirongly agree b)) agree  c¢) neither agree nor disagree  d) disagree &) strongly disagree

People are lonely because they are not given the chance 1o meet new peaople.
a) strongly agree  b) agree ¢} neither agree nor disagree  d) disagree &) strongly disagree

When | fail, | am devastated for a long time.
a) almost never by rarely ¢} sometimes d) quite often &) most of the time

When | come across problems for which | CANNOT find the correct answers in the text,

a) [ will ignore them,

b) | will read them, but will not really attempt {0 solve them.

c} | will try to do them, but if | get stuck | will stop immediately.

d) | will do them anyway, but | will be unsure about my solution unless the teacher checks it.
e} | will do them anyway. | can tell by myself if | have essentially solved a problem.

Math is one of my favourite subjects.
a) strongly agree b) agree  ¢) neither agree nor disagree  d) disagree &) strongly disagree

By trying too hard to understand ideas in math, | end up being more confused.
a} strongly agree  b) agree  c) neither agree nor disagree  d) disagree &) strongly disagree

Working in a group mativates me to spend more time and energy on my assignments.
a) always b} usually ¢} sometimes d) rarely e) never

Compared to other subjects, | write math exams
a) much less confidently than | write the others.
b) less confidently than | write the others.

¢} as confidently as | write the others,

d) more confidently than | write the others.

e) much more confidently than | write the others.

it is comforting to me that math problems usually have just one right answer.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree &) strongly disagree

Computers are only good for fast numerical computations.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

Working in a group makes even boring tasks enjoyabla.
a) always b) usually ¢) sometimes d) rarely e) never

| accept my mistakes as a learning opportunity.
a) almost never by rarely  c) sometimes d} quite aften e) most of the time

When presented with optional exercises in addition to assigned ones,

a) | will do both sets of problems.

b} I will solve the assigned exercises and | will attempt to do the optional enes.
c) | will solve the assigned exercises and | will glance over the optional ones.
d} | wilt do only the assigned exercises.

e) | will do neither,
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Pre-lest Mathematics Questionnaire

To be sure of myself | need to interact with my teacher.
a) very characteristic of me

bj rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

Tao be good in math a student needs to

a) recall solutions of problems seen in class or the text.

b) apply solutions of problems seen in class or the text, but to slightly difterent ones.

¢} modify solutions of problems seen in class or the text and then apply them 1o new ones.

d) combine salutions of problems seen in class or the text with ideas learned in the course to solve new
problems.

e) apply ideas learned in the course to solve new problems.

| have fun solving hard problems in math.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree e) sirongly disagree

if there were no grades to evaluate my success, | would

a) have no idea of how | did or whether | learned the material.

b} have only a vague idea of how | did and not be sure about how much | have jearned.
c) have some doubts about how | did and how much | have learned.

d) have a pretty good idea of how | did and of how much | learned.

e) know exactly how | did and how much | learned.

if you set realistic goals, you can succeed no matter what.
a) strongly agree  b) agree ¢} neither agree nor disagree  d) disagree  e) strongly disagree

| am able to apply what | have learned to new situations.
a) almaost never b)rarely  c) sometimes d) quite often &) most of the time
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Post-test Mathematics Questionnaire

This survey was designed by a research team at Champlain, Dawson and Vanier College. 1tis intended to
identify factors that affect how people learn mathematics,
Please mark your answers on this questionnaire using pen or dark pencil. Make only one mark per item, with

the exception of item #9 in the COURSE INFORMATION section.

Remember that there are no right or wrong answers to these questions. Your answers should reflect what you
actually and honestly think.

Thank you for your cooperation.

COURSE INFORMATION

—

Name: Student Nurnber:
2. Qutside of the classroom, how many hours a week do you study mathematics?

3. When you compare the workload in this Calculus course to the workload in your other science courses, do
you consider il to be
a} very heavy? b) heavy? c) average? d) lighter? &) very light?

4.  Atthe end of a lesson | walk away from the classroom feeling that
a) | understand the idea.
b) | understand the basics.
c) 1 understand some ideas but not all of them.
d} | understand just a few ideas.
&) | am very confused.

5. | attended in this course
a) more than 90% of the classes.
b) over 80% of the classes.
c) over 70% of the classes.
d} more than half of the classes.
e} iess than half of the classes.
8.  The instruction in this course was
a) very good.
b) good.
c) satisfactory.
d) fair.
g) unsatisfactory.
7. Do you have a computer at home? Yes No
8. Do you have access to the Internet at home? Yes No
9. How often do you use computers? Circle the most appropriate answer.
More than once a day Once a day More than once a week Once a week Once a month or less
10. What do you use the compuier for? Circle all appropriate answers.
E-maji Word processing  Internet search  Learning about interesting subjects Graphing
Spreadsheet  Games  Downloading music  Chatting with friends School work

Other (specify):

11. Rate your computer competence on a scale from 1 (no expertise) to 10 (expert):
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Post-test Mathematics Questionnaire

| experience a "rush", an "AHA!" feeling when | finally get a new math concept.
a) always b) usually c) sometimes d) rarely g) never

When it comes to math assignments, | prefer to

a) work completely by myself.

b) work mostly by myself with an occasional consultation with other students.

c) work by myself but 1 consult frequently with other students.

d) work mastly with other students, although | still like to do some parts by mysel.
e) do the whole thing with a group of students.

| get easily discouraged.
a) almost never b) rarely  c} sometimes d) guite often &) most of the time

Heredity determines most of a person's personality.
a) strongly agree  b) agree ¢} neither agree nor disagree  d) disagree e sirongly disagree

| prefer a mathematics course that

a) requires me to do only simpier fasks.

b) requires me to do only simpler or intermediate tasks.
¢) challenges me without pushing my limits.

d) pushes my limits guite a bit.

e) really pushes my lirnits.

1 will use the ideas that 1 iearn in math in other courses,
a) strongly agree by agree ¢} neither agree nor disagree  d) disagree e) strongly disagree

| dislike math.
a) sirongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

| can do even the most difficult problems in the math textbook.
a) always b) usually c) sometimes d) rarely e) never

t iearn best

a) when | study alone.

b) when [ can first discuss a few things and then study alone.

¢} when | divide my time evenly between studying with friends and working alone.
d) when 1 study with my friends and only do review alone.

&) when | study with my friends.

| prefer classes in which lectures are interrupted with hands-on activities where | am in control.
a) very characteristic of me

b} rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

Chance has a lot to do with being successful.
a) strongly agree b} agree  c¢) neither agree nor disagree  d) disagree g) strongly disagree

Use of computers in courses makes classes more interesting.
a) strongly agree  b) agree  c) neither agree ror disagree  d) disagree  e) strongly disagree

What is your cpinion about solving math problems?

a) In my opinion it is all about getting the answer.

b) In my opinion it is mostly about getting the answer.

¢) In my opinion it is mostly about understanding the ideas used in the solution of the problem.
d) In my opinion it is all about understanding the ideas used in the solution of the problem.

e) t can't decide what | think,

When | am stressed, my mind goes blank.
a) almost never b) rarely  c) someiimes d) quite often e) most of the time
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Post-test Mathematics Quuestionnaire

| get easily frustrated when studying math.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree e} strongly disagree

Mastery of basic math concepis is a prerequisite for my future studies.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree &) strongly disagree

If doing the hard problems did NCT guarantee me a good grade,

a} 1 would avoid them like the plague.

b} | would stick with the easier exercises.

c) sometimes | would try them but | would not persevere to the end.
d) | would always try them but | would not persevere to the end.

2) | would do thern anyway.

I'm think | have a good knowledge of basic concepts in math.
a) very characteristic of me

b) rather characterisiic of me

¢) somewhat characteristic of me
d) rather uncharacteristic of me
e) very uncharacteristic of me

[ resent revealing good ideas to other people in my group.
a) very characteristic of me

b) rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacteristic of me

&) very uncharacteristic of me

| learn best when

a) [ explore on my own without the help of a teacher,

b) t explore on my own with a teacher around to help when | need it.

c) | learn the material from a teacher, then explore on my own.

d} [ learn the material from a teacher, then explore with a teacher around te help when | need it.
e} a teacher explains everything to me.

{ am uncomfortable with the idea of using computers ia learn.
a) very characteristic of me

b} rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacteristic of me

g} very uncharacteristic of me

Successful math students understand the material quickly.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree &) strongly disagree

Whatever plans | make, there is always something that will mess them up.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree &) strongly disagree

| am most satisfied when a math course

a) requires me to gain deep understanding of all of the concepts covered.

b) requires me to gain deep understanding of most of the concepts covered.

c) requires me to gain deep understanding of some of the concepts covered.

d) requires me to get a good understanding of most of the concepts without going too deap.
e) requires me to get only a very basic understanding of the concepts.

When the situation changes, | adjust my plans.
a) almost never b) rarely  ¢) sometimes d) quite often e) most of the time

{ think that knowledge of math is essential for my future success.,
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree e} sirongly disagres

1 am unsure that my grades in math courses will be good.
a) always b) usually c} sometimes d) rarely e) never
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Post-test Mathematics Questionnaire

1 find math intellectually stimulating. :
a) strongly agree b} agree  c) neither agree nor disagree  d) disagree  e) strongly disagree

in a typical group setting, | feel left out.
a) always b) usually ¢) sometimes d) rarely e) never

| enjoy having tasks where

a) | decide by myself how 1o proceed.

b) | make a plan of haw to proceed, and then check it with the teacher before carrying it out.
c) the teacher outlines how to proceed and | provide the details.

d) the teacher provides step-by-step instructions.

e} all | have to do is fill in the bianks.

Ii 1 could | would avoid enrolling in a course in which [ have to use computers.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

| trust my judgement.
a) aimost never b)rarely  c) sometimes d) quite ofien &) most of the time

Being at the right place at the right time is essential for getting what you want in life.
a) strongly agree  b) agree  c) neither agree nor disagree  d} disagree e) strongly disagree

Knowledge of mathematics

a) depends entirely on the amount of effort one puts in to learning it.
b) depends mosily on the effart one puts in to learning it.

¢} depends equally on effort and talent for mathematics.

d) depends mostly on one's talent for mathernatics.

e) depends entirely on one's talent for mathematics.

| get angry when | am faced with challenging math problems.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

In my everyday experience, | will use the logical thinking that | learned in math courses.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree e) strongly disagree

When | don't understand ideas presented in mathematics courses,
a) it doesn't bother me at all. | only care about my grades.

b) it bothers me a fittle but if my grades are already good | will not try to fix it.
¢) it bothers me a lot but if my grades are already good | will not try to fix it.

d) it bothers me a lot. Even if my grades are already good | will try to fix it.

e} it bothers me a lot. Even if my grades are already good | will not stop until | have fixed it.

| expect to understand even the most complex ideas presented by math teachers.
a) always b) usually c) sometimes d) rarely g) never

[ need a pat on the shoulder in order to know that | have done well.
a) very characteristic of me

b) rather characteristic of me

c) somewhal characterisiic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

| like discussing ideas and solutions with other people.
a) very characteristic of me

b) rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacteristic of me

) very uncharacteristic of me
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Post-tesi Mathematics Questionnaire

Teachers' objectives in solving math problems in class should be
a) entirely to demonstrate and to drill students® skills.

b) mainly to demonstrate and to drill students' skills.

¢) mainly to enhance students' understanding of the theory.

d) entirely to enhance students’ understanding of the theory.

e) | can't decide what | think.

Computers make communication with my teachers and classmates easier.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree  e) strongly disagree

Intelligence is a given and cannot be trained or repressed.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

When | don't understand something in a math course,

a) | always keep working until | understand the concepis.

b} occasionally | stop working before | understand the concepts and | memorize the formulas instead.
¢) | often stop working before [ understand the concepts and | memorize the formulas instead.

d} very often | stop working before | understand the concepts and | memorize the formulas instead.
e} | memorize the formulas and leave it at that.

| know where to find the information that | need.
a) almost never b) rarely  c) sometimes d) quite often e) most of the time

| can succeed in math.
a) always b) usually c) sometimes d) rarely &) naver

Math is boring.
a) strongly agree b} agree ¢} neither agree nor disagree  d) disagree @) strongly disagree

it is useful to work on math assignments in a group because we can help each other.
a) strongly agree  byagree  c) neither agree nor disagree  d) disagree  e) strongly disagree

The skills 1 learn in mathematics courses are useless in everyday life activities.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

When faced with a difficuit problem in math i prefer 1o rely on my own resources to find the solution,
2) very characteristic of me

b} rather characteristic of me

c) somewhat characteristic of me

d} rather uncharacteristic of me

e} very uncharacteristic of me

Using computers 1o learn math is a waste of time.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

Making several unsuccessful attempts when solving math problems
a) is perfectly natural.

b) is relatively normal.

¢) indicates a potential problem with student's ability to learn math.
d) indicates that a student has a problem when it comes o math.

&)} a clear sign of a student who is bad in math.

If | successfully accamplish my task, i's because it was an easy one
a) strongly agree b} agree  c) neither agree nor disagree  d) disagree  e) strongly disagree

When a situation requires a change of plan or strategy, | feel confused or anxious.
a) almost never b) rarely  c) sometimes d) quite often e) most of the time

t avoid taking optional math classes.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree  e) strongly disagree



56.

57.

58.

58.

B0.

61.

62,

83.

64.

B5.

66.

67.

B8.

69,

70.

PAREA Proiect PA201-014 Final Report: Appendix 2: Student Questionnaires Page A2 - 14/16

Post-test Mathematics Questionnaire

When | am curious about an idea |

a) like to learn it even if it's very difficult o understand.

b) like to learn it even if it is somewhat difficult to understand.

c) like to learn it only if it's reasonably easy to understand.

d) like to learn it only if it's very easy to understand.

e) forget about it quickly and don't attempt to gain understanding.

| expect to be one of the weak studenis in math classes.
a) always b} usually ¢) sometimes d) rarely e) naver

Doing maihematics gives me satisfaction.
a) strongly agree  b) agree  c) neither agree nor disagree  d} disagree e) strangly disagree

In a typical group setting, | feel intimidated by my more competent group-mates.
a) always b) usually c) sometimes d) rarely e) never

Math is

a) all about understanding general ideas.

b) mostly about understanding general ideas.

c) evenly divided between understanding general ideas and carrying out pracedures step-by-step.
¢l) mostly about carrying out procedures step-by-step.

e) all about carrying out procedures step-by-step.

| get anxious when | don't get step-by-step instructions on how to accomplish a task.
a} very characteristic of me

i) rather characteristic of me

¢) somewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

Computer-based instruction should be included in coliege level courses.
a) strongly agree  b) agree  c) neither agree nor disagree d) disagree  e) strongly disagree

You cannot cheat your fate.
a) strongly agree  b) agree  ¢) neither agree nor disagree  d) disagree e) strongly disagree

When presenied with a math problem that | am not sure | will be able to finish,
a) ! work on it until it is solved, no matter what.

b) 1 give it my best shot anyways, but move on eventually if it doesn't work out.
c} | try to solve it, but as soon as | get siuck | abandon the attempt.

d) [ try to solve it only If the teacher forces me to.

g} | don*t even try the problem.

When something | want doesn't work out, | rapidly get back on my feet.
a) atmost naver by rarely  c) sometimes d) quite often ) most of the time

When in a group setting, | feel comfortable speaking my mind.
a) always b) usually c) sometimes d) rarely g) never

School success is mostly a result of one's socio-economic background.
a) strongly agree  b)agree  c) neither agree nor disagree  d) disagree g) strongly disagree

My solutions for math problems are correct.
a) always b) usually ¢) sometimes d) rarely e) never

| think that understanding concepts in mathematics is only useful to mathematicians or people warking in
related fields.
a) strongly agree  b)agree  c) neither agree nor disagree d) disagree  e) strongly disagree

Maih is learned slowly by solving problems, learning from mistakes and figuring out the meaning of ideas.
a) strongly agree  b) agree  c) neither agree nor disagree d) disagree @) strongly disagree
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Post-tesi Mathematics Questionnaire

When | come across a difficult problem in mathematics | immediately seek my instructor's help.
a) very characteristic of me

b} rather characieristic of me

c) somewhat characteristic of me

d) rather uncharacieristic of me

e) very uncharacteristic of me

Use of computers makes learning math easier.
a) strongly agree  b) agree ¢} neither agree nor disagree  d) disagree &) strongly disagree

Pecple are lonely because they are not given the chance to meet new people.
a) strongly agree b)) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

When [ fail, | am devastated for a long time.
a) almost never b) rarely  ¢) sometimes d) quite often &) most of the time

When | come across problems for which | CANNOT find the carrect answers in the text,

a) | will ignore them.

b) 1 will read themn, but will not really atternpt 1o solve them.

¢} | will try to do them, but i | get stuck | will stop immediately.

d) 1 will do them anyway, but 1 will be unsure about my solution unless the teacher checks it.
&) | will do them anyway. | can tell by myself if 1 have essentially solved a problem.

Math is one of my favourite subjects.
a) strongly agree b)) agree  c) neither agree nor disagree  d) disagree &) strongly disagree

By trying too hard to understand ideas in math, | end up being more confused.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree &) strongly disagree

Working in a group motivates me to spend more time and energy on my assignments.
a) always b) usually c) sometimes d) rarely e) never

Compared to other subjects, [ write math exams
a) much less confidently than | write the others.
b) less confidently than | write the others.

c) as confidently as | write the others.

d) more confidently than | write the others.

e) much more confidently than | write the others.

it is comforting to me that math problems usually have just one right answer,
a) strongly agree  h) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

Computers are cnly good for iast numerical computations.
a) sirongly agree  b) agree  ¢) neither agree nor disagree  d) disagree  e) strongly disagree

Working in a group makes even horing iasks enjoyable.
a) always b) usually c) sometimes d) rarely g) never

| accept my mistakes as a learning opporiunity.
a} almost never b} rarely  ¢) sometimes d) quite often &) most of the time

When presented with optional exercises in addition to assigned ones,

a) | wilt do both sets of problems.

b) | will solve the assigned exercises and [ will atternpt to do the optional ones.
¢) [ will solve the assigned exercises and | wili glance over the optional ones.
d) | will do only the assigned exercises.

&) | will do neither.
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Post-test Mathematics Questionnaire

To be sure of myself | need to interact with my teacher.
a) very characteristic of me

b) rather characteristic of me

c) somewhat characteristic of me

d) rather uncharacteristic of me

e) very uncharacteristic of me

To be good in math a student needs o

a) recall solutions of problems seen in class or the text,

b) apply solutions of problems seen in class or the text, but to slightly different ones.

c} modify solutions of problems seen in class or the text and then apply them to new ones.

d) combine solutions of problems seen in class or the text with ideas learned in the course to s0lve new
prohlems.

e} apply ideas learned in the course to solve new problems.

| have fun solving hard problems in math.
a) strongly agree  b) agree  c¢) neither agree nor disagree  d) disagree e) strongly disagree

If there were no grades to evaluate my success, | would

a) have no idea of how | did or whether | learned the material.

b) have only a vague idea of how | did and not be sure about how much | have iearned.
c) have some doubts about how | did and how much | have learned.

d) have a pretty good idea of how | did and of how much | learned.

@) know exactly how | did and how much | learned.

If you set realistic goals, you can succeed no matter what.
a) strongly agree  b) agree  c) neither agree nor disagree  d) disagree  e) strongly disagree

| am able to apply what | have learned to new situations.
a) almost never b} rarely  c¢) sometimes d) quite often e} most of the time
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Coding Schema for Bank of Questions: P3

Lelimit LD1=Level of Difficulty is Simple
C=Continuity - .

. 7. LD2=Level of Difficulty is
D=Differentiation Co=Conceptual ]
G=Graphing Al=Algorithmi Moderate

pung gontame LD3=Level of Difficulty is
A=Application of Differential )

Complex

Calculus
Problem P3

L, Al a)=LD2, b)=L.D2, ¢)=LD3, d)=LD3
On limits at # infinity / infinite limits
1. Determine each of the following limits, showing all work:

3
. X+ 4:
a) lim X T

B R T
Solution:

We note that this is a limit of a rational function. Further, x approaches - means we are examining behaviour at the
feft edge of the graph. We know that at either edge, & polynomial is dominated by its leading term, i.e., its behaviour
is entirely determined by the teading term. Thus, the behaviour of a rational function will be determined by the ratio
ol its leading terms.

4y Lox 1

. . 1
lim == lim == lim —=—
Rk SR S S R L e S el )

This limit tells us that at the left edge of the graph the given rational function will be asymptotic to the horizontal
ling, v = 4.

Coding:

1. Copying the problem
1. Correctly code =0
2. Incorrectly code =1
3. Noreal attempt to solve problem code =2

Remaining numbers are only coded if 1. above i1s coded as 0.

2. Count the number of steps used in the solution: count a step for each new expression on a new line, or after
= or after = , but don’t count copying of the origimal problem as a step.

3 3
. . . . , . X +4x X
3. Count the number of times the symbol lim is omitted when it shouldn’t be, e.g., lim Evw s i
e syt -t 45 20

4. Count the number of times the symbol lim is written when it shouldn’t be, e.g.,
o
x4y
ETE 140
lim ‘,‘ e = lim
amee 3y 37 + 5 «==2-0+0
\3 .1'3 X
3. Count the number of times the symbol lim is written without an expression of any type, e.g., lim=....
T X=pm
0. Count the number of times the symbol lim is written without writing x~= underneath.
7. Code the method of solution:

1. If both numerator and denominator are divided by the highest power of x existing in the denominator,
or if the expression is converted to a ratic of the leading terms from both the numeraior and
denominator. code =0

2. Anything else code = 1

8. Code solution as:
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Coding Schema for Bank of Questions: P3

1. Correct code =0

2. Correct except for trivial arithmetic error code =1

3. Correct, piven a small algebraic error code =2

4. Incorrect code = 3
9. Code for use of the symbol = in the computation of the answer:

1. Not using it in the computation {we allow use of a calculation leading to an expression — na
=

statement that justifies the subsequent use of some valid method, or use of a valid method ending in

ratio of # and e) code=0
2. Using = in the compitation of the limit code =1
10. Code student discussion:

1. Nothing written is incorrect. cade=10
2. Something written is incorrect, code =1
3. Nothing is writlen. code =2

. g X +4x+3

by  lim————

=1 y+3
Solution:

We note that this is a limit of a rational function. Rational functions are continuous where they are defined, hence
we begin by hoping for continuity at x = -3 and simply substituting in.
[ A3 TR e4-H+39-1243 7
==t x+3 {-3)+3 —3+3

9
0

While our first attempt did not work, it tells us that the rational function has a discontinuity at x = -3, but that more
algebra will be required if we are to determine whether this is a removable discontinuity (graph has a missing point)
or an infinite discontinuity (graph has a vertical asympiote). We know that a polynomial has # zero atx =-3 if and
only if (x - (-3)) = {x + 3) is a factor, thus the zeroes of both the numerator and denominator must be due to this
factor. We attempt to cancel this factor from both numerator and denominator, and then hope that the resulting
rational function will be continuous so that the limit can be computed by substitution.

lim A3 DD = 3e1= 2

A—=3 r+3 x-4=3 x+3 Xemb=3

Note that since this limil exists, we now know that the given rational funcrion has a removable discontinuity atx =-3
which will appear on a graph as a missing poiat at (-3,-2}.

Coding:

1. Capying the problem
1. Correctly code =0
2. Incorrectly code =
3. No real attempt to solve problem code =2

Remaining numbers are only coded if 1. above is coded as 0.

2. Count the number of steps used in the solution: count a step for each new expression on a new line, or after
= or after = , but don’t count copying of the original problem as a step.

. . . . , X +4x+3
Count the number of times the symbol lim s omitted when ii shouidn™t be, e.g., lim R AL

L8]

£et=3 x+3

4, Count the number of times the symbal lim is written when it shouldn't be, e.g., limx+1=lim~3+]
P g3

I—+3
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5. Count the number of times the symbol ]im3 is written without an expression of any type, e.g., limJ =
X F—-
6. Count the number of times the symbol lim is written without writing x--3 underneath.
7. Code the method of solution:
i. If any of these methods are used: factoring, or synthetic division, or trial and error code = 0
2. Anything else code =1
8. Code solution as:
[. Correct code=0
2. Correct except for trivial arithmetic error code=1
3. Correct, given & small algebraic error code =2
4. Incorrect code = 3
9. Code algebraic error:
1. Naerror in algebra, i.e., obtain x + § en route to solution cede =0
2. Solution indicates that an attemnpt is made to divide both the numerator and the denominator by (x + 3)
but the result is different fromx + I code = 1
3. No autemp at division by {x + 3) is made code =2
10. Code student discussion:
1. Nothing written is incorrect. code = 0
2. Something written is incorrect. code=1
3. Nothing is written. code =2
¢y lim de-3
s v x-5
Solution:

We note that this is a limit of an algebraic function. Further, the limit is asking us to determine the behaviour of the
function at the left edge of the graph. Reasoning in similar fashion to such limits for polynomial and rational
functions, we know that only the highest power terms of both numerator and denominator will affect this limit so we

simplify the function. We also note that «x* =
solve this Hmit.

x| , and at the left edge, | x } = -x. Using this information we can

Hm —ae = lim 2 gim A2 fim -4 =4

dx -3
e m\f\ +x~35 “"]'I’IP‘“F —*—“I l x—l~m-—j( T

The result of this limit calculation tells us that at the lefi edge the given function is asymptotic to the horizontal line
y=-4

Coding:

Remaining numbers are only ceded if 1. above is coded as 0.

1. Copying the problem
1. Correctly code=0
2. Incorrectly code =1
3. Noreal attempt to solve problem code=2

Remaining numbers are only coded if 1. above is coded as 0.

2. Count the number of steps used in the solution: count a step for each new expression on a new line, or afier
= or afler « , but don’t count copying of the original problem as a step.
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. . . . . ) 4x -3 4x
Count the number of times the symbol lim is omitted when it shouldn’t be, e.g., lim L - 14

“""\/x:-f.\‘—i x

)

4. Count the number of times the symbol is written when it shouldn’t be, e.g.,
4 3
lim B S = fim —1 -0

N I

5. Count the number of times the symbol lim is written without an expression of any type, e.g., .
frtered

6. Count the number of times the symbol lim is written without writing x--e

7. Code the method of solution:

1. If any of these methods are used: divide by the highest power in the denominator (x or x°) or the ratio
of the leading terms or rationalize and then use either division by the highest power of the denominator

or the ratio of leading terms code=10
2. Anything else cade = 1
8. Code solution as:
1. Correct code =0
2. Correct except for trivial arithmetic error code = |
3. Correct, given a small algebraic error code = 2
4. Incorrect code =3
9. Code for algebraic error (if symbols are all replaced there is no algebra, hence no algebra errors):
1. Naoerror in algebra code =0
2. Algebra notational error, but student still works past it carrectly. code = 1
3. The only algebraic error is a* =x code =2
4. Any number of algebraic errors, other than J¥ =x code =3
5. Any number of algebraic errors, one of which is Nxl=x code =4
10. Code for use of the symbol = in the computation of the answer:
. . . . . . - m" 0
1. Not using it in the computation (we allow use of a calculation to obtain an expression - na
(==
statement that justifies the subsequent use of some valid method, or use of & valid method ending in
ratio of # and =) code =0
2. Using = in the computation of the limit code=1
11. Code swdent discussion:
1. Nothing writien is incorrect. code =0
2. Something written is incorrect. code=1{
3. Nothing is wrinien. code =2
d) tim (V= 5w+ 7 - 2x)
g —sea
Solution:

We note that this is a Himit of an algebraic function. Further, the limit is asking us to determine the behaviour of the
function at the right edge of the graph. Reasoning in similar fashion to such limits for polynomial and rational
functions, we know that only the highest power terms of both numesator and denominator will affect this limit, as
long as we are looking at a ratio. Thus, we must first rewrite this function as a ratio, and then simplify the function

keeping only highest power 1erms. We aiso note that Jx* =l|xj, and at the right edge, | x| =x. Using this
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information, we can solve this limit.

|,

"

Lh

o

+

~]

+

[

I
—
e,

——
=
V2
1
Lh
=
+
-3
—
[X]
1
T3
]
e
b~

lim (\/f 5x47 - ::..1—) = lim («.’,\': 5547 —?.x.)x

X—pm I—tnr

i (.r2-5x+7—4_\-3)=1im (33" —5x+7) e 3y . 3y

A (\/.\'1 —5x+7+2x} T (-\/x: ~5x+7+ 2.\‘) pm (J.'{T'{"?.x) A (|x|+2.1‘)

lim e im 2 i s oo
s (x+2x) aom (3x) o=

The result of this imit calculation tells us that at the right edge a graph of the given function heads downwards
towards -e=. Looking more closely we note that this the function behaves like a linear function, y = -x, at the right
edge, thus we have determined that this function has an oblique asymptote at the right edge.

Coding:

1. Copying the problem
I, Correctly code =0
2. Incorrecily cade = 1
3. No real attempt to solve problem code=2

Remaining numbers are only coded if 1. above is coded as 0.

2. Count the number of steps used in the solution: count a step for each new expression on a new ling, or after
= or after = , but don’t count copying of the original problem as a step.

3. Count the number of times the symbol lim is omitted when it shouldn’t be, e.g.,

h (\f,tz —5x+7 +2x)
(wj.\'z =5x+7 +2x) .

lim (Jf —5x+7 —2_1-)= (Jf —5x+7 —2.1‘))(

=i

4, Count the number of times the symbol Iim is written when it shouldn’t be, e.g.,
3¢ sx 7
lim X X x —e=~5+0

= z = [im .

e (1 Sy 7 2% e=J1-040+2
— -t T
X ox X X

3. Count the number of times the symbol lim is written without an expression of any type, e.g.,, lim=....
6. Count the number of times the symbol lim is written without writing x-=
7. Code the method of solution:
1. If the first step is to rationalize and ther any of these methods are used: division by the highes: power
of x in the denominator or the ratio of leading terms cade =0
2. Anything else code = 1
5. Code solution as:
[. Correct code =0
2. Correct except far trivial arithmetic error code =1
3. Correct, given a small algebraic error code = 2
4. Incorrect code = 3
9. Code solution as:
1. There is evidence that student believes that the square root of a quadratic has the same degree as a
finear function when x—e, then code =0

2. Noevidence of this belief code = 1
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10. Code for use of the symbol = in the computation of the answer:
1. Not using it in the computation (we allow use of a calculation involving "= - =" and "es/=" ina
statement that justifies the subsequent use of some valid method, or use of a valid method ending in

ratio of # and =) code=0
2. Using = in the computation of the Hmit code=1

11 Code student discussion:
1. Nothing written is incorrect. code =0
2. Something written is incorrect. code = 1
3. Nothing is written. code =2

12. Code for algebraic error:
1. No algebrajc errors code=0

2. Arleast one algebraic error code = 1
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LeLimit LD1=Level of Difficulty is Simple
C=Continuity . .
. 7 I.D2=Level of Difficulty is
D=Differentiation Co=Conceptual
G=Graphi Al=Aloorithmi Moderate
=rEpIing . . =Algontime LD3=Level of Difficulty is
A=Application of Differential _
Complex
Calculus
Problem P4
1., Co,L.DI
]

a)  lim g(x) b) hm  glx)
X =y X5 —o0

¢ lim glx) d) lim g(x)

r—=-2 x—=4

e) provide equations for all asymptotes to g(x):

Solution:
a) We note that at the right edge of the x-axis the graph
appears to be heading upwards, getting ever larger, hence
wowards =. Thus, lim g(x)=e

X—3 oo

b) We note that at the lefi edge of the x-axis the graph

appears to be getting closer and closer to the horizontal line, v = -4. Thus,

2. For the function g whose graph is given, determine, with reasons, each of the following limits:

- —
1

lim g(x)=-4
X— —co

¢} We note that s x gets closer and closer to -2, from either side of -2, the y-values on the graph appear to be

heading downwards, towards -. Thus, lim g(x)= —ea.

xX—r=12

d) We note that as x gets closer and closer to 4, but from the right side of 4, the y-values on the graph appear to be

heading upwards, getling ever larger, towards =, Thus,

lim g(x)=v=
x=- 47

&) At the left edge there is a horizontal asymptote: y = -4. There are two vertical asymptotes: ¥ =-2 and x = 4.

Coding: N.B. For coding purposes e = infinity, U = undefined = DNE = Does Not Exist, and code = 99

when leaving blank

a)
1. Correct answer:
1.  Answer is = or (= and DNE)}
2. Answer is DNE (but not also =)
3. Answer is anything else
4. No answer
2. If code for 1. above is 1:

1. Any correct explanation for DNE (e.p., diverges 1o =, approaches =,

or just not finite, ...)
2. No correct explanation for DNE

Ll

Discussion (anything beyond just a writien answer):

1. Specific reference to not having HA at right edge but instead increasing

towards or diverging towards «

Ll b

or something else)
4, No discussion

Correct information (reference to right edge of graph behaviour)
Incorrect information (e.g., reference to left edge of graph behaviour,

code = 0
code=1
code =2
code=3
code=0
code=1
code =10
code =1
code
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b)

th

c}

10.

11.

Coding Schema for Bank of Questions: P4

Correct answer:

1. Answeris-4

2. Answeris4

3.  Answer is anything else
4. No answer

Discussion {(anything beyond just a written answer):

1. Specific reference to having HA at left edge and decreasing towards or
coming from above

2. Correct information {reference to left edge of graph behaviour)

3, Incorrect information (e.g., reference to right edge of graph behaviour,
or something else)

4. No discussion

Correct answer:

1. Answer i -= or(-e and DNE)

2. Answer is DNE (but not also -=)
3. Answer is anything eise

4, No answer

If code for 1. above is 1:

1. Any correct explanation for DNE (e.g., diverges to -=, approaches -e=,
or just not finite, ...)

2. No correct explanation for DNE

Discussion (anything beyond just a writien answer):

1. Specific reference to having VA at x = -2 and decreasing/diverging towards -«
on both sides

Correct information (reference to behaviour as x gets close to -2)

Incorrect information (e.g., reference to anything else)

No discussion

ot D

Correct answer:

Angwer is = or (= and DNE)
Answer is DNE

Answer is ~= or (~= and DNE)
Amnswer is anything else

No answer

L/ SN TS B 6 B

If code for 9. above is 1:

1. Any correct explanation for DNE (e.g., diverges to «, approaches =,
or just not finite, ...)

2. No correct explanation for DNE

If code for 9. above is 2:
1. Any evidence that the student just misunderstood which side to approach from
2. Nosuch evidence

. Discussion (anything beyond jusi a written answer):
Specific reference to having VA at x = 4 from the right and increasing/diverging towards = on that stdde = 0

Correct information (reference to what happens as x gets close to 4)
Incorrect information (e.g., reference to anything else)
No discussion

) 1D
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code =0
code =1
code=2
code=3
code=0
cade = 1
code =2
code =3
code=0
code=1
code=2
code =3
code = 0
code=1
code =0
code=1
code =2
code =3
code =0
code=1
code=2
code =3
code =4
code =0
code=1
code =0
code =1

code=1
code = 2
code =3
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e)
For left edge:
13. Depiction of asymptote:
1. Depict asymptote at left edge via any of y = -4, y = 4, in words, -4, 4, x=-d or x = 4

2. No depiction of asymptote at left edge

14, If code for 13 above is 0
1. Ifanswerisy=-4

2. If answer is y = -4, but in words instead of equation
3. Ifanswerisy=4
4., Ifansweris-4 ord
5. Ifanswerisx=-4
6. Ifanswerisx=4
Forx=-2:

15. Depiction of asymptote:
I. Depict asymplote at x = -2 viaany of ¥ = -2, x = 2, in words, -2, 2, y=-2ory=12
2. No depiction of asymptoie at x = -2

16. If code for 15 above is (

i. Ifanswerisx=-.2
3. If answer is x = -2, but in words instead of equation
3. Ifanswerisx=2
4, Tf answer is -2 or 2
5. Ifanswerisy=-1
6. IHHanswerisy=2
Forx=4:

17. Depiction of asymplote:
1. Depict asymptote at x = 4 viaany of x = 4, v = -4, in words, 4, -4, y=4 ory = -4
2. No depiction of asymptoie at x = 4

18. If code for 15 above is 0

}. Ifanswerisx=4

2. If answeris x = 4, bur in words instead of equation
3. Ifanswerisx=-4 )

4, If answer is 4 or -4

5. Ifanswerisy=4

6. Ifanswerisy=-4

Page A3 - 9/38

code =0
code =

code =0
cade =1
code =2
code =13
code=4
code =5
cade =0
code = 1
code = 0
code =1
code =2
code =3
code =4
code =3
cede =0
code =1
code=10
code =1
code =2
code=3
code =4
code =3
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i LD1=Level of Difficulty is Simple
e Difforeniati LD2=Level of Difficulty is
=Differentiation , Co=Conceptual Moderate
G=Graphing Al=Algorithmic LD3=Level of Difficulty is
A=Application of Differential Complex
Calculus mpie
Problem P35
On derivatives
D&, ALLD=2
1. Use the Newton's Quotient definition of the derivative to prove that when f(x)= = : then
, d f(x -2
Fne @2
dx (x-1)°
Solution:
: _ 1
7 T
i 1
x+h = =
A ) Ax+y-1 2x+2h-1
i 1
I _ -
A 2(x)-1 2x-1]
Flesh)- fx) =
1 1 I x(?.x-l)__ 1 >{(2.1:—1-?_11—1)”__(’.2.76—-1)—(234:-!-21'1—1)
Tx+2h~-1 2x-1 (2x+2h-1) (2x=1) 2x-1 (2x+2h-1) (2x+2h=-1)(2x-1
_ 2x~1-2x=2h+1 _ ~2h
(2x+2h=1{2x~1) (2x+2h-1)2x-1
~2h
flx+h)y—f(x) _ (2x+2h-1)(2x-1) | _ =2 x-l-— -2
f h Ox+20-D2x-0 ) b (2x+2h ~1(2x-1)
. C flaa by~ fix) . -2 -2 -2 -2
x) =l e = I = = = 3
Fo=ig I i (O 2hmD@r -1 (2x+2AD-D@x-1) @Qx=-DEx-1) @x-1)

Coding: N.B. For coding purposes code = 99 when leaving hlank

1. Does the student make an attempt to use “Newton's Quotient” definition (even if there are errors):

1. Yes (at least states the equation for f *(x) even if there are errors in the equation) code=0
2. Yes, but miscopies the function f (x} code =1
3. No, just uses rules of differentiation code=2
4. Noanswer at all code =3

Fill in the remaining questions only if the answer 1o question 1. above is nat code = 3. In all other cases use
code = 99 for the remaining questions.

2. Count the number of steps used in the solution: count a step for each new expression on a new line, or after = or
after = . but don’t count copying of the original problem as a step if it is the first step.

3. Count of algebra errors:
4. Existence of miracies:
1. No “miraculous” changes in calculation so that answer comes out correct code=0

2. One or more “miraculous” changes in calculation so that answer comes out correct code=1

Fill in the remaining questions only if the answer to question 1. above is not code = 2. In all other cases use
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code = 99 for the remaining questions.

5.

Knowledge of basic Newton's Quotient formula:
1. whether limit is used or not, or the particular letters exhibited here are used, the student shows knowledge

flx+h)— f(x)

of Newton's Quotient being based on the slope of a secant line, i.e., the ratio ;i . or anything
]
equivalent code = 0
2. student believes there 1s a ratio mvolved, but has an incorrect formula for the ratic code = 1
3. student does not believe that there is a ratio involved code = 2

Fill in the remaining questions only if the answer to question 5. above is code = 0 or code = 1. If the code is 2, then
cade the remaining questions as code = 99,

6.

Does the student know how io compute f(x+h} (or equivalent in other letters):
1 1

1. student correctly computes initial algebraic value of f (x+h), i.e., or code =0
2x+h)-1 2x+2h -1

2. student jumps past this, but work indicates correct understanding of this code =1

3. student jumps past this and there is an error so cannot tell if they understood this code =2

4. student clearly makes an error at this stage, f (x+/) = f(x) + h code =3

5. student does not compute f (x-+f1} code=4

Does the student actually use “Newton's Quotient” definition in computing f ‘(x)(even if there are errors):
1. Yes (no rules of differentiation are used) code=90
2. No, uses rules of differentiation code = 1

Fill in the remaining questions only if the answer to question 7. above is code = 0. I¥ the code is 1, then code the
remaining questions as code = 99.

g.

Existence of limit in definition of derivative:
1. student uses limit (even if not formally) in conjunction with Newton's Quotient ratio to compute dededidve 0
2. student does not use limi¢ at all code=1

1f the answer to to question 8. is 1 code the remaining questions 99; Method:

1. student makes attempt to compute Newton's Quotient ratio, or parts thereof before attempting to apply the
Yimit, but dees eventually apply the limit code =0

2. student combines computation of the Newton’s Quotient ratio and the limit immediately code =1

. Count the number of times the symbo} }im is omitied when it shouldn’t be
=
. Count the number of times the symbol l,m}, is written when it shouldn’t be

. Count the number of times the symbol }m[x] is written without an expression of any type

3. Count the number of times the symbol lim is written without writing /-0 underneath.
. Useof f{ ) notation - writes the first step in Steve’s solution:

1. student uses this notation, at least once code =0
2. student never uses this notation, code =1

. Use of f{x+/) withx - Oinstead of 1 - 0

1. Writesand uses /1 - 0 code = 0
2. Writesx~ Obutuses 1 -0 code=1
3. Writesand usesx - 0 code =2
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I(_:;%:;::i: ity LDli=level of D?fﬁculty %s Simple
e A CoConcentual LD2=Level of Difficuity is

. cptua Moaoderate
G=Graphing Al=Algorithmic 1D3=Level of Difficulty is
A=Application of Differential Compl d
Calculus o

N.B.  Use code = 99 for any questions that you would otherwise leave blank.

Problem P6
On Dervative Rules
D, Al, 2)=LD2, b)=L.D2, c)=L.D2, d)=1.D3, e)=LD3

Determine the indicated derivatives in each case:

df(x)

X

a) f(x)=>5x ——+1/§+e“ fllx)= and f7(x) =

1f(x)
l

Solution:

We begin by rewriting f (x) slightly se that it will be easier to differentiate. “A spoonfu] of Algebra/Functions makes
the Calculus go down easier.”

-2x

2 2 _ _ A
=38 St b =5yt = 2x T X 4
X

Now we use the Rules of Differentiation and compuie the first derivative:

A -2 .:/ -Ix 4
P = dfx)_ d (5" m2T Tt ) _dix’ dax? .4 el i ¢ | Sum and Difference Rules
’ dx dx dx dx dx dx o

5 4 ,d . . 2 \% e 5 4(-2x) I{\:/Il:g.t:lp;cz;zgon by & Constant and

=j—2 —-x " t— 1L
dx dx 3 d(-2x) dx !
=5.3x% = 2(-2)x" R S L Power, ¢ ' & Muttiplication by a
3 dx Constant Rules
_ a2 Y Algebra/Arithmetic and Identity
=15x" +4x 3+§x/;+e = x-2(1) Rugle
: 2 -y

=15x" +4x7 + 3* -2¢7 Algebra/Arithmetic

Coding for a): (Ignore slight difference in Dawson example)
1. Algebra done prior to differentiation:

1. Evidence (implicit or explicit) that -2/ is done by power rule code =0
2. Evidence (implicit or explicit) that -2/x* is done by quotient rule code = 1
3. No evidence of method used for -2/x" term code = 2
4. No answer provided for this term code =3
2. Sum and Difference Rule Skill:
1. Student (implicitly or explicitly) begins by using sum and difference rules code=0
2. Student atempts to use some other rule of differentiation first code=1
3. Student attempts to use Newton's Quotient code=2
4. Student leaves guestion blank code = 3

If answer 10 2. is code = 3, remaining questions on a) are code = 99
3. Algebra, Differentiation Algorithm Skill: Count the number of erroneous terms {0 to 4) in answer

4. Chain Rule Skill:

1. Student correctly uses Chain Rule on term e (Dawson is sin{-2x) mste&d} code=0
2. Student (implicitly or explicitly) attempts to use Chain Ruie on term e™, but

there is at least one error code = 1
3. Student does not (implicitly or explicitly) attempt to use Chain Rule on term e code =

5. Power Rule Skill:
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1. Stiudent correctly uses Power Rule on term x* code =0
2. Swudent (implicitty or expliciily) attempts 1o use Power Rule on lerm x*, but there

is at least one error code = 1
3. Student does not (implicitly or explicitly) attempt 10 use Power Rule on term X code =2

Solution for second derivative:
Now we use the Rules of Differentiation ané compute the second derivative:

df (x) 2 3,2 - -2
P d( - ] d(15-" raxt e Ix Ao ] The second derivative is just the first
ooy _d f(x) dr | _ 3 - ok Just
o= = derivative of the first derivative.
dx dx
7 -
« 2 PR d(ix}g] -l
- d (13" ) + d (""‘ ) si3 d (2" ) Sum and Difference Rules
dx dx dx dx
. : -1 .
dx*  dx? (2 Ndx3 _de™
=15——+4 H = -2 inlication by : :
e I "'( 3J i T Multiplication by a Constant Rule
=15 05+ 4- (=3 + 2y 1 iy —Zﬁxm Power and Chain Rule
3 3 d(-2x) dx
(2 = . . T
=30x-1257 - 5 XA =2e x (—")z— Algebra/Arithmetic, ¢ * and Multiplication by
* a Constant Rule
, a2 -4/
=30x—12x =] Z |x 7 =27 % {(=2NHD) . . .
9 Algebra/Arithmetic and Identity Rule
AN
=30x-12x" _(5]1’ P 44e” Algebra/Arithmetic

Coding for a. second derivative:
6. Algebra, Differentiation Algorithm Skill: Count the number of erroneous terms (0 to 4) in answer

7. Understanding of second derivative
1. Student shows evidence (implicit or explicit) of notion that second derivative is derivative of first

derivative code =0
2. Student does not show evidence of notion that second derivative is derivative of first derivative code =1
3. Student leaves this blank code =

N.B. For b) - e) by a trivial error in differentiation we mean a simple recall error such as the derivative of a
trig. function, or D(x*3)=2x"2

b) F(x)=sin®(x)cos(3x), f(x) = L
dx
Solution:
f,(x)zdf(.x):dsin'(x)cos(Bx)= d sin” (x} cos(3x) +sin*(x) d cos(3x) Product Rule
dx dx v dx
d(sin{x))" d(sin(x}) o a dcos(3x) d3x
{a(amm) A e Chain Rule (twice)
. W , dx Power, sin{ ), cos( )&
={7 - . it rwy| r— - o 4 3
('Sm(l)st(i))ws(an rsin (1)(( SH]G"“%&-J Multipiication by a Constant Rules
. ; A A e el e
2sin(x)cos(x) cos(3x) - 3sin” ()sin(3x) (1) Algebra/Arithmetic & Identity Rule
= 2sin{x)cos(xyces(3x) — 3sin® (x)sin{3x) Algebra/Arithmetic

Coding for b):
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Application of Differentiation Algorithm

1. Student (implicitly or explicitly) begins by using product rule code = (
2. Student attempts 1o use some other rule of differentiation first code=1
3. Student leaves question blank code =2

If answer to 8. is code = 2, remaining questions on b) are code = 99

9.

10,

11,

Product Rule Skill:
1. Student uses Product Rule correctly (i.e., has pattern or rule correct, even if subsequent differentiation is
Wrong) code = 0
2. Student attempts 10 use Product Rule but has some error in understanding the rule code =1
3. Student does not attempt to use the Product Rule code=2
Chain Rule Skill:
1. Student correctly uses Chain Rule on term cos(3x) code =0
2. Student (implicitly or explicitly) attempts to use Chain Rule on term cos(3x), but there is at least
one errar cotde =1
3. Student does not (implicitly or explicitly) astempt to use Chain Rule on term cos(3x) code =2
Trigonometric Rules Skill:
1. Student correctly uses Trig. Rules on both sin{x) and cos(3x) cade=0
2. Student makes an error in one Trig. Rule usage, but other is correct code=1
3. Student makes errors in both Trig. Rule usages code =2
Differentiation Algorithm Skill:
1. Student arrives at correct answer code =0
2. Student makes one trivial error code =1
3. Swdent makes multiple trivial errors or one substantial error but is essentially on track code = 2
4. Student is not even close to correct code =3
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(x*=-3° df (x)
c) fix)ysm/e————, f(x)=——
S (2x+1)° F® dx
Solution:
.(1.3__3)3} d ‘2_33 e 1
| w——t (x" -3 (.j‘_+1):_{t2_3)3d(—-\+1)
Fllxy= df {x) = (2x+1) = dx — dx Quotient Rule
dx dx ((2x+1))
2 a3 2 . 1 .
[d(.x =3 A 3)}(21,_”)1 s _3)3[ d(@x+17  d(2 +1)]
d(x"—13) dx d(2x+1} dx Chain Rule
(2x+1)
5 3 2 ] kl Ax g
3 -3y % fﬁ-«- —ﬁ Cax+ Dt = =3 222+ 1) x[g——}-«iﬁ ﬂ] Power, Difference and Sum Rules
: dx dx dy  dx
Qx+1)
2 bl 2 2 d X
(3(-\" -3 x[2x —D])(Zx +1)7 ="~ 3)3(2(3-\‘ + 1)*{};: + OD Power, Constant, Multiplication
= - by a Constant Rules
(2x+1)?
(6.1:(.\-2 -3 )(zx +1)7 = (7 =3 (202x + D x[2(D)]) Algebra/Arithmetic and Identity
Gra D) Rule
(6x(x* =37 J(2x +1)° = (" = 3)* (4(2x + 1)) Algebra/Arithmetic
2x+1°
22+ D =3P [3x(2r +1) - 2" -3) | Algebra/Arithmetic
(2x+ 1)
2" =3 3x(Ax 4 1)~ a7 -
G L b2 3] Alsebra/Arithmetic
(Zx+1)°

Coding for ¢):

13. Application of Differentiation Algorithm

L.

a2

3.

4.

Student (implicitly or explicitly) begins by using Quotient Rule

Student begins by using algebra to bring denominator into numerator &5 a negative

exponent term, then Product Rule

Student attempts to use some rule of differentiation other than described
in a. and b. abave as first step

Student leaves question blank

If answer 10 13. is code = 3, remaining questions on c} are code = 99

i4. Quotient Rule Skill
Student uses Quotient Rule correctly (i.c., has pattern or rule correct, even if subsequent differentiation is

L.

2

3.

LIPS Iy B

LI 8

wrong)

Student atiempts 1o use Quotient Rule but has some error in understanding the rule

Student does not attempt to use the Quotient Rule

15. Differentiation Algorithm Skiil:

code = 0
code=1
code=12
code=3

cade=10
code = 1
code = 2

N.B, For 2 - d, even if the student makes a copy error or algebra error, so long as which rules and the

sequence they are 10 be used in remains unchanged, coding continues as if no error was made.

Student uses the differentiation rules correctly
Student makes one error in using the differentiation rules

Student makes multiple errors in using the differentiation rules but is essentially on track

(sequence and the rules)

Student is not even close o correct (uses wrong rules or in wrong sequence)
Error in copying or algebra that changes the rules that are used or the sequence in

which they are used

code =0
code = 1
code =2
code=3
code =4



PAREA Project PA201-014 Final Report: Appendix 3: Coding and Scoring Schema  Page A3 - 16/38
Coding Schema for Bank of Questions: P8

16. Algebra Skill:

1. Student uses the algebra rules correctly code=0

2. Student makes only trivial error(s) (e.g., adds up 2x + 4x = Bx, or forgets a term in subsequent computation,
but not such as incorrectly multiplying out a product of bracketed terms) code =1

3. Student uses the algebra rules incorrectly code =2

8) 7(x)=(@n(2x)” . '(x) = df (‘)

Solution:
We note that this function has a variable base and a variable exponent. Thus, there is no “Rute of Differentiation”
that applies. Instead we use the technique known as Logarithmic Differentiation.

I The definition of the function.

¥)=(tan(2x
fo=tanGOy Apply In{ ) to both sides so that the
In{f(x))=1n ((mn(?_x))‘ )= 2*In(ian(2x)) exponent inside the In( ) becomes a

. facior outside the In{ ).
din(/ () _d (' In(un20)) Differentiate both sides (implicit
dx dx differentiation now).

dia(f(x) d (x) [dx* d In{tan(2x)

dj(f 2 ) J;_t { i ]1‘] (tan(2x) )+ x (_*“'("E‘*——) } Chain and Product Rules

7+ il 4y : in (2 :

1 d f( x) (,J . )ln (mn(’h)) din (tan(...\)) dtan{2x) « d2x | In{ ), Power and Chain (2 times) Rules
f(.x) dr d (tan(2x)) d4(2x) dx

1 dfx) — (2x)in (1an(2) )+ 5 xsec?(2x) xodx In( ), tan( ) and Multiplication by a
I( 1) dx um{?_x) dx Constant Rules

l 2
f(\) dﬁi\) (2x)In{tan(2x)) + x wn(gﬂxsec“(ﬂx}x?ﬂ)] Identity Rule
d(x)_ 27 sec’ (2x) Multiply both sides by f(x) to isolate the

dx =f( ‘”)[7 xIn(tan(2x))+ tan(2x) ] derivative on the L.H.S.
41 _|s. }n(tan(g‘))+M aan(2a)” fﬂxlgei-arngrithme.li-c and replace f {x) by

dx tan(2x) its original definition

N.B.  Dawson example is too different, code = 98 for all of these on Dawson papers

Coding for d):
17. Application of Logarithmic Differentiation Algorithm
1. Swudent (implicitly or explicitly) recognizes this as Log. Diff., and carries out ali Lon

Diff. appropriate steps code =0
2. Swwdent (implicitly or explicitly) recognizes this as Log. Diff., and carries out some

but not all ... steps code =1
3. Student does not recognize this as Log. Diff. and attempts to use some other rule as first step code =2
4. Swudent leaves question blank code=3

If answer to 17. is code = 3, remaining guestions on d) are code =99

18. Trigonometric Rules Skill:
1. Student correctly uses Trig. Rule on 1an(x) code =0
2. Student makes an error in Trig. Rule usage code = 1
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19. Differentiation Algorithm Skill:
N.B. For a - d, even if the student makes a copy or algebra error, so long as which rules and the sequence
they are to be used in remains unchanged, coding continues as if no error was made.

Lh B w1 —

which they are used

20. Algebra Skill:

Swudent arrives at correct answer
Student makes one trivial error

Student makes multiple trivial errors or one substantial error but is essentially on track code =2
Student is 1ot even close to correct
Error in copying or algebra that changes the rules that are used or the sequence in

1. Student uses the algebra rules correctly

12

code =0
code =1
code=3
code = 4
code =0

Student makes only trivial error(s) (e.g., adds up 2v + 4x = 8x, or forgets a term in subsequent computation,

but not such as incorrectly multiplying out a product of bracketed terms) code=1

(¥S)

Swudent uses the algebra rules incorrectly

&) [(x)=x ~In(sec(x), f(x)= ifx)
X

Solution:

code =2

Flxy=+x" —In(sec(x)) = (_\'3 —In{sec( x)) )}5

. d
X]=
FE)) " =

13| —

](f - !n(sec(x)))-}g X

3 —

(
|
{

'w;.-.

](.\‘3 —In(sec{x)) )y ®

337 —tan(x)

- 242" = In(sec(x))

)(xa - ln(sec(x)))-yz x| 3x

d (x3

If (x) _ d (.1‘] - ln(sec(.\'}))}é _ d (,1‘3 - ln(sec(x)))}g o d (x3 - ]n(sec(x)))
X

- In(sec(x))) dx

[dx* _ dingsec(x))
dx dx

[,z _dlnlsec(x))  dsec(x)

axt -

sec(x)

d(sec(x)) dx }

»sec(x) Lan(.\:)}

A bit of Algebra to make the
Czleulus easier.

Chain Rule

Power and Difference Rules

Power and Chain Rules

In{ Yandsec({ )Rules

Alpebra

N.B. Dawson exnmple is too different, code = 98 for all of these an Dawson papers

Coding for e):

21. Algebra done prior to differentiation:

I. Yes,¥ is rewritten as { )" prior to differentiation code =0
2. No, but Power Rule is used as if rewritten correctly prior to differentiation code =1
3. Something else is done code =2
4,  Question left biank code =3
If answer to 21. is code = 3, remaining questions on e) are code = 99
22. Chain Rule Recognition:
1. Student correctly notes the need to use Chain Rule both for ( )" and In{sec(x)) code=0
2. Student correctly notes the need 1o use Chain Rule for one but not both of ( )* and In(sec(x}) code=1
3. Student does not note the need to use Chain Rule in either case code =2
23, Chain Rule Skill:
1. Student correctly uses Chain Rule both for { )™ and In(sec(x)) code =0
2. Swdent correctly uses Chain Rule for one but not both of { }* and in{sec(x)) code = 1
3. Student does not note use Chain Rule correctiy in either case code=2

24, Differentiation Algorithm Skill:
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N.B. For a - d, even if the student makes a copy or algebra error, so long as which rules and the sequence
they are to be used in remains unchanged, coding continues as if no error was made.

1. Student arrives at correct answer code=10
2. Student makes one trivial error code =1
3. Student makes multiple trivial errors or one substantial error but is esseatially on track code=2
4. Student is not even close to correct code = 3
5. Error in copying or algebra that changes the rules that are used or the sequence in which they are
used code=4
Algebra Skill:
1. Student uses the aigebra rules correctly code =0
2. Student makes only trivial error(s) (e.g-, adds up 2x + 4x = 8x, or forgets a term in subsequent computation,
but not such as incorrectly multiplying out a product of bracketed terms) code = 1

(]

Student uses the algebra rules incorrectly cade =12
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- LDl=Level of Difficulty is Simple
=-onunuiy LD2=Level of Difficulty is
D=Differentiation Co=Conceptual
G=Graphing Al=Alporithmic Moderate . .
.= " . LD3=Level of Difficulty is
A=Application of Differential C )
omplex
Calculus
N.B.  Use code = 99 for any questions that you would otherwise leave blank.
Problem P13

On curve sketching
G&IL.,Al & Co, LD3

1. Given f(x) =x%- 1025, f'(x) = 2°(3x* - 20y, and f" (x) = 30x°(x" - 4}, showing all of your work:
a) determine any asymptotes and all v and y-intercepts of f{x);
b) determine on which x-intervals the function f'(x) is increasing, on which x-intervals the function f (x) is
decreasing, all relative extrema, vertical tangent lines and cusps;
c) determine on which x-intervals the function £ (x} is concave up, on which x-intervals the function f (x) is
concave down, and all points of inflection;
d) sketch a graph of £ (x) consistent with the information that you have gathered above.
Solution:
We observe that the given function f{x) is a polynomial of degree larper than I, hence it will not have any
asymplotes, vertical, horizontal or oblique. Nor will it, or its derivative or second derivative have any discontinuities
of any type. Thus, there will be no cusps, vertical tangent lines, critical numbers where f'(x) is discontinuous,
possible points of inflection where f " (x) is discontinuous.
a)  As abserved above there are no asymptotes, since f () is a polynomial.
y-intercept: f (0} = 0 ---- so this function passes through the origin
a-intercepts: fF(X)=0 = - 100 =0 = 32 10)=0 = y=0o0r =10
Edee behaviour: degree 6 polynomial, behaves at the edges like the leading term, in this case x°, hence at
both edges this function heads upwards towards infinity

aliernatively, lim (x*~10x")= lim 2 =os

T—pim Tz
Thus, there are no horizontal asympiotes at the edges.
b)Y  As chserved above, since £'(x) is continuous, i.e., it has no discontinuities. Thus, the only critical numbers will
be due to the derivative being zero.

fl0)=0 = 26(3x*-20)=0 = x=0or \—*J——w\/:

There are four x-intervals created by the three critical numbers. We pick one x-value to represent each interval,

T4 = 2(<4PGH - 20) =-128(48 - 20) = -128(28) < 0, so f '{x) is negative on [ww,m?.\jg], so f{x)is
decreasing on that interval

F-1) = 24103107 - 200 = -2(3 - 20y = -2(-17) = 54 > 0, 50 '(x) is positive on {—E\E,D] S0 f(x)is

increasing on that interval

oo

FH =21 -20)=2(3-20) = 2(-17) = -34 < 0, s0 f'(¥) is negative on LG,Z ] , 50 f{x) is decreasing

on that interval

ta|tn

FA) = 2(43(4)T - 200 = 128(48 - 200 = 128(28) > 0, s0 f '{x) is positive on [2,’ ,m] , 50 f (x} is increasing on
that interval
Based on the sbove information we note that f(x) must have a local minimum at x = —2\/9;, a local maximum at
x =0, and & local minimum atx = E\E .

c) Since f”(x) is a pelynomial it is continuous everywhere, .., it has no discontinuities. Thus, the only possible
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points of inflection will be due to the second derivative being zero.
f'x)=0 = 3057 -4)=0 = x=-2,0,2

There are four x-intervals created by the three possible points of inflection. We pick one x-value to represent

each interval.

F(-3) = 30(-3)%((-3)* - 4) = 30(9)(5) > 0, 50 f "(x) is positive on (-=,-2), so f '(x) is increasing on {-=-2), and
f(x) is concave up on (-=,-2)

F"(-1) = 30(-1((-1)* - 4) = 30(1)(-3} < 0, s0 f "{x) is negative on (-2.,0), so f'(x} is decreasing on (-2,0), and
Ff(x) is concave down on (-2,0)

FU = 30(1)*((-1)* - 4) = 30(1X-3) < 0, s0 f "(x) is negative on (0,2), so f'(x) is decreasing on (0,2}, and f(x) is

concave down on (0,2)
F7(3) = 30(3)%(3)* - 4) = 30(9)5) > 0, so f "(x) is positive on (2,), s0 f '(x) is increasing on (2,«), and f(x) is
concave up on (2,=)
Based on the information abave, f(x) has points of inflection at x = -2 and 5 = 2.
We have all the information that we computed above recorded in a table.

no x-ind m PI M PI m x-int no
H x-in H
A t A
¥-in
t
x| - T8 B 2 0 2 B Jio -
N3 N3
fix I N 0 -148 96 | - ~ | -96 -148 0 ’ o
’ 0] \ -
*u rd Y -~
F'® - - - 0 + | + b+ 0 - - - 0 + + +
f(x) + + + + + 0 - 0 - 0 e + + + +

As we record the information previously gathered, we note the points at which the function has a local minimum,
local maximum and points of inflection. At this point we compute the approximate values of fat the minimum,
maximum and points of inflection and add this information to the table.

Looking at the entire table we note that the information gathered is consistent, 50 we sketch a graph.

1
3

Lh
o

h
o

1
=N
e
==}

=

Lt
-
|-

Y Saf
i
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Coding for P13

Aleorithm:
1. Do they check for edge behaviour of £ 7
1. Yes - using limits

2. Yes - by some other method
3. Unclear
4, Missing i.e., No evidence that they checked for edge behaviour.

If they answered 3. or 4. enter 99 for 2.

2. When they checked for edge hehaviour of /7, did they get it correct?

1. Yes
2. No
3. Do they follow sequence: determine zeroes of f, followed by computing sign of f’ on all intervals?
1. Yes
2. Ne
3. Unclear
4. Missing
4. Do they follow sequence: determine zeroes of /", followed by computing sign of £ * on all intervals?
1. Yes
2. No
3. Unclear
4. Missing
Arithmetic/Aloebra:

5. Count of arithmetic/algebra errors:
6. Count of errors in notation

Graph:

Graph: Existence

7. Presencefabsence of graph
1. Complete Graph Present
2. Incomplete Graph Present

99. Absent

If 7. above is coded as 99, then B. - 14. coded as 90,

If 1. above is coded as 3 or 4. then code 8. below as 99,

Graph: Edge behaviour

8. Does the edge behaviour on the graph maich what student determined by other method(s)?
1. Yes

2. No
3. Unclear
99. Edge behaviour is missing or has nothing prior 1o match up to

N.B. In cases where f ' has closely adjacent zero and extrernum, if student clearly (e.g., draws a dotted vertical ling)
distinguishes between these two, then we give more generous latitude to error of horizontal placement of one of the
two corresponding features of f.

Graph: Sign of /' corresponds to direction of f



PAREA Project PA201-014 Final Report: Appendix 3: Coding and Scoring Schema  Page A3 - 22/38
Coding Schema for Bank of Questions: P13

9. For each zero of f*, is a corresponding (with reasonable margin of error) Extrema/Stationary Point of f drawn
on the graph: Count # of omissions (if only one zero of f', code 99)

10. For each zero of £, is the correct corresponding (with reasonable margin of error) Extrema/Stationary Poini of f
drawn on the graph: Count # of errors or omissions (if only one zero of ', code 99)

il. Alternating pattern on graph of intervals of increase and decrease of
0. Correct
1. Erros(s)

Graph: Sign of f ' corresponds to concavity of f

12. For each zero of f ', is a corresponding (with reasonable margin of error) Point of Inflection of f drawn on the
graph: Count # of omissions (if only one zero of £/, code 99)

13. For each zero of £ '/, is the correct corresponding (with reasonable margin of error) Point of Infiection of fdrawn
on the graph: Count # of errors or omissions (if only one zero of 7, code 99}

14. Aliernating pattern of intervals of concavity on graph of f:
0. Correct
1. Error(s)

Explanations
Explanations: Edge Behaviour

15. Student makes statement(s) about edge behaviour of the function f
only correct statement(s)

mixture of correct and incorrect statements

only false statement(s)

9. no statement

[ LU I 8 B

Explanations: Continuity/Discontinuity

16. Student makes statement(s) about continuity/discontinuity of the function f
1. only correct statement(s)
2. mixture of correct and incorrect statements
3. only false statement(s)
99, no statement

Expianations: Connection between sign of f * and direction of f

17. Verbal Explanation of relationship between sign (-/+) of f' and direction (~/+) of f
only correct statement(s)

mixture of correct and incorrect statements

only false statement(s)

9. no statement

\D U R —

18. Symbolic Explanation of relationship between sign (-/+) of /' and direction {~/») of §. In different classes this
takes on different appearances. It may be tabular, with a line for fand a line for /' (and a correspondence
between direction of fand sign of £ established by +/- and -/~) or it may be an x-axis, with arrows and signs or
other symbols, or it may be in symbolic statements including intervals. The key is the establishment of the
correspondence between the direction of fand the sign of £’ using symbols, possibly symbols and a few words.
1. only correct statement(s)

2. mixture of correct and incorrect statements
3. only false statemeni(s)
99. no statement
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19. Verbal Explanation of relationship between zeroes (0) of ' and extrema or stationary points of f
only correct siatements

correct but omit mention of stationary point possibility

mixture of correct and incorrect siatements

only false statement(s)

0. no statement

RN

20. Symbolic Explanation of relationship between zeroes (0) of /' and extrema or stationary points of /. In different
classes this takes on different appearances. It may be tabular, with a line for fand a line for /' (and a
correspondernce between a 0 of £ and a M, m, §P), or it may be an x-axis, with arrows and signs or other
symbols.

only correct statement(s)

carrect but omit mention of stationary point possibility

mixture of correct and incorrect statements

only false statement(s)

9. no stalement

(L B SRS B R

Explanations: Connection between sign of /'’ and concavity of f

21. Verbal Explanation of relationship between sign (+/+) of f*' and concavity (~/-) of f
only correct statement(s)

mixture of correct and incorrect siatements

only false statement(s)

9. no statement

(Vo JLIC TN T Jari

22. Symbolic Explanation of relationship between sign (</+) of f /" and concavity (=/-) of f. In different classes this
takes on different appearances. [t may be tabular, with a line for fand a line for £ * (and a correspondence
between concavity of £ and sign of f * established by +/— and -/™) or it may be an x-axis, with symbols and
signs, or it may be in symbolic statements including intervals. The key is the establishment of the
correspondence between the direction of fand the sign of £ using symbols, possibiy symbols and a few words.
1. only correct staiement(s)

2. mixture of correct and incorrect statements
3. only false statement(s)
99. no statement

23, Verbal Explanation of relationship between zeroes (0) of f** and points of inflection of £
1. only correct statement(s)
2. mixture of correct and incorrect statements
3. only false statement(s)
99. no statement

24, Symbolic Explanation of relationship between zeroes (0} of 7 '* and points of inflection of /. In different classes
this takes on different appearances. It may be tabular, with a line for fand a line for /¥ (and a correspoadence
between points of inflection of fand change of sign of /" or it may be an x-axis, with symbols and signs, or it
may be in symbolic stxtements including intervals. The key is the establishment of the correspondence between
the direction of fand the sign of f  using symbols, possibly symbols and a few words.
1. only correct statement(s)
2. mixture of correct and incorrect statements
3. only false statement(s}
99. no statement
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L=Limit LD1=Level of Difficuity is Simple
C=Continuity oy .
e " LI>2=Level of Difficulty is
D=Differentiation Co=Conceptual
G=Graphing Al=Algorithmic Moderate
pung gortthmit LD3=Level of Difficulty is
A=Application of Differential
Complex
Calculus

N.B.  Use code =99 for any questions that you would otherwise leave blank.

Problem P14

On curve sketching

G &L, Al & Co, LD3
cu D I, FY |

Given f(x) ='1% . fix= "\4 6 and F7(x)= b t'é , showing all of your work:
X X X

a) determine any asymplotes and all x and y-intercepts of f(x);
b} determine on which x-intervals the function f(x) is increasing, on which x-intervals the function f (x} is
decreasing, all relative extrema, vertical tangent lines and cusps;
¢) determine on which x-intervals the function f (x} is concave up, on which x-intervals the function f {x) is
concave down, and all points of inflection;
d) sketch a graph of f (x) consistent with the information that you have gathered abave.
Solution:
We observe that the given function £ (x) is a rational function, hence it may have asymptotes, vertical, horizontal or
oblique. Also, its derivative or second derivative are also rational functions and so may have discontinuities.

) R
a) y-intercept:  f{0)= (%;;' = -6— =U - the function has no y-intercept, instead it has an infinite discontinuity
{the graph has a vertical asympiote at x = ()
. T )
fim f(x)= lim 1—+3'—'- = = o , 50 ON the left of x = 0 the graph will head downward towards -
a—0" =D X

= oo, 50 on the right of x = 0 the graph will head upward towards «

Qllq‘ "—'{Im

. . x+2
lim f{x)= lim —s—=
x—0* =0 X

aintercept: f(M) =0 = x+2=0 = x=-2
N.B. We note that there are no other values of x that make the denominator zero, other than x =0, fience f(x) has
no other discontinuities.

x+2 . X R U R . ;

~ = lim = lim —= — =0",s0atboth edges the function is asymptotic

X Xrttes Fepzm Y £

(horizontal asymptote) 1o the horizonial line y = 0, i.e., the x-axis. Stnce we observe that at both
edges the function will have positive values, any graph we sketch must approach the x-axis from
above at both edges.

Edges: lim f(x)= lim

b} Critical Numbers:
£(x) is discontinuous: this oniy occurs if the denominator, X, is zero, i.e., atx = 0. We aiready knew
this since the function itself is discontinuous at this value of x, hence the
derivative cannot exist there.
Flia)=0 = 2x-6=0 = x=-3
Since there are 1wo critical numbers, we have three intervals to investigaie: (-=,-3), {-3.0}, and (0,=).

. —(2(-4}+6) 2 b .. s o "
f(—4) = ———Semm=———>0, thus f'(x) is positive on (-=,-3), and £ (x} is increasing on (-=,-3)

(-4y* 256
—(2(— -
fi-n= _L__((‘_“%)_;—mﬁ_)_ = —;l <0, thus £ '(x) is negative on (-3,0), and f(x) is decreasing on (-3,0)
(2 -
Ja)) =-—('—{(1]~3;--6-)- = ~1—8< 0, thus f'{x) is negative on (0,=), and f (x) is decreasing on (0,)

Based on the information above we note that f (x) has a local maximum at x = -3, but x = 0 is a vertical asymptote as
seen in (a) above, so there is no local extremum there.



FAREA Project PA201-014 Final Report: Appendix 3: Coding and Scoring Schema Page A3 - 25/38
Coding Schema for Bank of Questions: P14

c) Possible Points of Inflection:
f"(x) is discontinuous:  this only occurs if the denominator, +°, is zero, i.e., at x = 0. We already
knew this since the function itself is discontinuous at this value of x, hence
the derivative cannot exist there, and so the second derivative cannot exist
there either.
frixy=0 = Gr+24=0 = x=-4
Since there are two possible points of inflection, we have three intervals to investigate: (-,-4), (-4,0), and
HIX)
6-5)+24 -6 6

"(=5) = = = 0, thus f "(x) is positive on (-=,-4), hence f'(x) Is increasing on
P =T == 0 thus S (W) s (-eo.-4), hence £ () :
(-=,-4), and f{x) is concave up on (-=,-4)
] 6(-1+24 18 hpn : "4 is decreasi
f(-i)= T = = =—]18<0, thus f "(x} is negative on (-4,0), hence f '{x) is decreasing on (-4,0),
and f (x) is concave down on (-4,0)
. 6()+24 30 o .. e .
FeY =-—-—-———-(I), =T= 30> 0, thus f "(x) is positive on (0,=), hence f'{x) is increasing on (0,=), and

S (x) is concave up on (0,=)
Based on the information above we note that £ {x) has a point of inflection at x = -4, but v = 0 is a vertical asympiote
as seen in (a) above, so there is no point of inflection there.

We have all the information that we computed above recorded in a table.

H PI M x-in AY H
A t A . A
X -0 -4 -3 -2 0 o LS
J(x) AT U |=
, i/zlv ™ ~
, }/;2 ~ \
o 0 . 0*
Fix) + 7 + |+ 0 - - - U -
Frx +{ 0 - - - - - u +

As we record the information previously gathered, we note the points a1 which the function has a local minimum,
iocal maximum and points of inflection. At this point we compute the approximate values of fat the minimum,
maximum and points of inflection and add this information to the table.

Looking at the entire table we note that the information gathered is consistent, so we skelch a graph,

Since the values of f (x} at the poimt of inflection and the local maximum are very small, and there is a vertical
asymptote at x = 0, this is a difficult graph to portray in a single view. That is, if we make the range of y-values
shown large, we will obtain a clear image of the function as x approaches 0, i.e., nearby its vertical asymptote, but
we will not see the point of inflection and the local maximum. On the other hand, if we make the range of y-values
small, we will obtain # nice image of the point of inflection and the facal maximum, but will not see the vertical
asymptote. Thus, I have created two graphs. One shows the overal] shape, including the vertical asymptote and
horizonial asymptotes. The second, zooming in near the point of inflection and local maximum, shows these two
aspects particularly well, '
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Coding for P14
Algorithm:

i Do they check for edge behaviour of f?
1. Yes - using limits
2. Yes - by some other method
3. Unclear
4. Missing, ie., No evidence that they checked for edge behaviour.

If they answered 3. or 4. enter 99 for 2.

2. When they checked for edge behaviour of £, did they get it correct?
1. Yes
2. No
3. Do they check for V.A. behaviour of f?
1. Yes - using limits
2. Yes - by some other method
3. Unclear
99, Missing, i.e., No evidence that they checked for VA behaviour.

If they answered 3. or 4. enter 99 for 4.

4. When they checked for VA behaviour of f, did they get it correct?
i. Yes
2. No

3. Do they compute y,,, value?

1. Correct
2. Incorrect
99, Missing compuiation

6. Do they follow sequence: determine zeroes of £/, followed by computing sign of ' on all intervals?
1. Yes
2. No
3. Unclear

99. Missing
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7. Do they follow sequence: delermine zeroes of £ *, followed by computing sign of f " on all intervals?
1. Yes
2. No
3. Unclear
99. Missing

Svmbalic representation:

8. Count of arithmetic/algebra errors:
9. Count of errors in notation
Graph;

Graph: Existence

it Presence/absence of graph
1. Complete Graph Present
2. Incomplete Graph Present
99. Absent

If 10. above is coded as 99. then code 11. - 17. coded as 99,

1f 1. above is coded as 3 or 4. then code 11, below as 99.

Graph: Edge behaviour

11. Does the edge behaviour on the graph match what student determined by other method(s)?
1. Yes
2. No
3. Unclear

99. Edge behaviour is missing or has nothing prior to maich up to

If 3. above is coded as 3 or 4, then code 12. below as 99.

Graph: VA behaviour

12, Does the VA behaviour on the graph match what student determined by other method(s)?
l. Yes
2. No
3. Unclear

09. VA behaviour is missing or has nothing prior to match up to

N.B. In cases where £ * has closely adjacent zero and extremum, if student clearly (e.g., draws a dotted vertical ling)
distinguishes between these two, then we give more generous latitude to error of horizontal placement of one of the
wwo corresponding features of f.

Graph: Sign of f* corresponds to direction of f

13. For each zero of f ', is a corresponding (with reasonable margin of error) Extrema/Stationary Point of f
drawn on the graph: Count # of omissions

14, For each zero of 7', is the correct corresponding (with reasonable margin of error) Exirema/Stationary Point
of f drawn on the graph: Count # of errors or omissions

Alernating pattern on graph of intervals of increase and decrease of f:
0. Correct
i. Error(s)
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Graph: Direction of /' corresponds to concavity of f

16. For each change in direction of f ', is a correspanding (with reasonable margin of error) Point of Inflection
of fdrawn: Count # of omissions

7. For each change in direction of 7, is the correct corresponding (with reasonable margin of error) Point of
inflection of fdrawn on the graph: Count # of errors or omissions

18, Alternating pattern of intervals of concavity on graph of f:
0. Correct
1. Ermor(s)

Vertical scale of the graph

19. Is the vertical position of the maximum (with reasonable margin of error) drawn on the graph
0. Carrect
1. Incormrect

20. Is the vertical position of the HA (with reasonable margin of error) drawn on the graph
0. Correct
1. Incorrect

Explanations
Explanations: Edge Behavicur (HA)

21. Student makes statement(s) about edge behaviour (FIA) of the function f
1. only correct statement(s)
2,  mixture of correct and incorrect statements
3.  only false statement(s)
99, no statement

Explanations: Continuity

20 Student makes statement{s) about continuity of the function f
1. only correct statement(s}
2.  mixture of correct and incorrect statements
3. only false statement(s)
99, no statement

Explanations: Discontinuity (VA)

23. Student makes siatement(s) about discontinuity (VA) of the function f
1. only carrect statement(s)
2. mixture of correct and incorrect statemenis
3. only false statement(s}
85. no statement

Explanations: Connection between sign of f * and direction of f

24. Verbal Explanation of relationship between sign (-/+) of f' and direction (+/») of f
1. only correct statement(s)
2.  mixtre of correct and incorrect stalements
3. only false statement(s)
99. no statement
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25, Symbolic Expianation of relationship between sign (+/+) of 7' and direction (~/+) of /. In different classes
this takes on different appearances. It may be tabular, with a line for fand a line for f* (and a
correspondence between direction of f and sign of ' established by -+/» and -/+) or it may be an x-axis, with
arrows and signs or other symbols, or it may be in symbolic statements including intervals. The key is the
establishment of the correspondence between the direction of fand the sign of ' using symbols, possibly
symbols and & few words.

1. only correct statementi(s)

2.  mixture of correct and incorrect statements
3. only false statement(s)

99, no statement

26. Verbai Exptanation of relationship between zeroes (0) of f* and extrema or stationary points of f
1. only correct statements
2. correct but omit mention of stationary point possibility
3.  mixture of correct and incorrect statements
4. only false statement(s)

99. no siatement

7. Symbalic Explanation of relationship between zeroes (0) of /' and extrema or stationary points of f. In
different classes this takes on different appearances. It may be tabular, with a line for fand a line for f* (and
a correspondence between a O of £/ and a M, m, SP), or it may be an x-axis, with arrows and signs or other
symbols.

only correct staiement(s)

correct but omit mention of stationary point possibility

mixture of correct and incorrect statements

only false statement(s)

9. no statement

g W

Explanations: Connection between sign of /'’ and concavity of f

28, Verbal Explanation of relationship between sign (-/+) of f /' and concavity (~/-) of f
1. only correct statement(s)

mixture of correct and incorrect statements

only false statement(s)

9. no statement

‘-DEJJ !d

29. Symbolic Explanation of relationship between sign (-/+} of /' and concavity (~/-) of f. In different
classes this takes on different appearances. 1t may be tabular, with a line for fand a line for £ * (and a
correspondence between concavity of fand sign of /" established by +/— and -/7} or it may be an x-axis,
with symbols and stgns, or it may be in symbaolic statements including intervals. The key is the
establishment of the correspondence between the direction of fand the sign of f " using symbols, possibly
symbols and a few words.

only correct slatement(s)

mixture of correct and incorrect statements

only false statement(s)

9. no staiement

[N B ' B PG IS

30. Verbal Explanation of relationship between zeroes (() of £’ and points of inflection of f
I.  only correct statement(s)
2.  mixture of correct and incorrect statements
3. only false statement(s)
99, no statement
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Symbolic Explanation of relationship between zeroes (0) of f ' and points of inflection of f. In different
classes this takes on different appearances. It may be tabular, with a line for fand a line for /* {and a
correspondence between points of inflection of fand change of sign of f " or it may be an x-axis, with
symbols and signs, or it may be in symbolic statements including intervals. The key is the establishment of
the correspondence between the direction of fand the sign of f " using symbols, possibly symbols and a few
words.

1. only correct statement(s)

2. mixture of corect and incorrect stalements

3. only false statement(s)

99. no statement

Symbolic Explanation of relationship between zeroes (0) of f " and points of inflection of f . In different
classes this takes on different appearances. It may be tabular, with a line for f and a line for £ * (and a
correspondence between points of inflection of fand change of sign of /" or it may be an x-axis, with
symbols and signs, or it may be in symbolic statements inclading imtervals. The key is the establishment of
the correspondence between the direction of f and the sign of £ " using symbols, possibly symbals and a few
words.

1. only correct statement(s)

2. mixwre of correct and incorrect stalements

3. only false statement(s)

99. no statement
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we change the data to blanks.

P3a)

(131

yor “xx” or “x” or 99,

Charuacteristic

Coding Schema #'s

Logic of scoring

#1.

If #1.=] or #1.=2, then all others are scored as blank.

symbolic skill

#2.,3.,4.,5 &6.

Make frequency table of values of sum((#3.-#6.)/#2.) and then use
it 1o create scoring table.
Remark from the frequency table (frequence table value= "v"):
If v=0, then score as 1, else
if ve=1/4, then score as 2, else
if v<=1/2, then score as 3, else
if ve=3/4, then score as 4, else
if v>3/4, then score as 5.

knowledge of
algorithm

#7.

If #7.=0, then score as 1, else score as 5.

cosrect answer

If (#1=1 or #1=2), then 5, else
if #8.=0, then score as 1, else
if #8.=1, then score as 2, else
if #8.=2, then score as 3, else
if #8.=3, then score as 5.

conceptual

If #9.=0, then score as 1, else
if #9.=1, then score as 5.

discussion

If #10.=0, then score as 1, else
if #10.=1, then score as 3, else
if #10.=2, then score as 5, else
if #10.=3, then score as 99.

carrecl solution

based on score in
symbolic (S),
algorithmic (A),
correct answer (C)

If sum(S+A+C) < 4, then score 1, else
if 3 < sum{S+A+C) < 6, then score 2, else
if 3 < sum{S+A~+C) < §, then score 3, else
if 7 < sum{S+A+C) < 15, then score 4, else
if sum(S+A+C) = 15, then score 3.
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P3b)
Characteristic Coding Schema #'s Logic of scoring
#l If #1.=1, then all others are scored as 99.
symbolic skill 5, | #2.,3.,4.,5.&6 Make frequency table of values of sum{{#3.-#6.)42.) and then
use it to create scoring table
knowledoe of #7 If (#11="" or #17= """ or #11>0), then "
algorithm if #7.=0, then score as 1, else score as 5.
corTect answer #8 I #8.=0, then score as 1, else
if #8.=1, then score as 2, else
if #8.=2, then score as 3, else
if #8.=3, then score as 5.
symbolic skill §, | #9. If #9.=0, then score as 1, else
if #9.=1, then scare as 5.
discussion #10. If #10.=0, then score as 1, else
if #10.=1, then score as 3, else
if #10.=2, then score as 5, else
if #10.=3, then score as 99.
total symbolic #2, - #6.,#9 If 8,=1 then score as 3, , else

skill

score as 5

correct solution

based on score in
symbalic (S}, algorithmic
(A} and correct answer
©

If sum{S+A+C) < 4, then score 1, else
if 3 < sum(S+A+C) < 6, then score 2, else
if 5 < sum({S+A+C) < 8, then score 3, else
if 7 < sum($+A+C) < 15, then score 4, else
if sum(S+A<+C) = 15, then score 5.

from P34 and F3b

P3 comhbined
Characteristic Coding Schema #'s Logic of scoring
symbolic skill all 2 symbolic skill values { sum of 2 values/Z

knowledge of
algorithm

2 knowledge of algorithm
values from P3a and P3b

sum of 2 values/2

COfTect answer

2 correct answer values

sum of 2 values/2

discussion

2 discussion values

sum of 2 values/2

correct soiution

2 correct solution values

sum of 2 values/2

concepl

#9.

Score the same as conceptual in P3a)

P4a)

Characteristic

Coding Schema #'s

Logic of scoring

corTect answer #1.- 432, If #1>1 then 5 else
if #1=0 then 1 else
if (#1=1 and #2=0) then 1 else 3
discussion #3 If #3=3, then 99 else 2 *#3+1
eorrect solution #1 -#2 SAITIE &5 COMTect answer

P4b)
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Characteristic Coding Schema #'s Logic of scoring
correct answer #d. If #4.< 2 then #4+1 else 3
discussion #35. If #3.=3 then 99 else 2%#5.+1
correct solution #4. score the same as cOITECL answer
Pdcy
Characteristic Coding Schema #'s Logic of scoring
correct answer #06., 7. If #6.>1 then 5 eise
if #6.=0 then | else
if #6.=1 and #7.=0 then 1 else 3
discussion #8 If #8.=3 then 99 else 2%#8.+1
carrect solution #6.,7. score the same ats correct answer

P4d)

Characteristic

Coding Schema #'s

Logic of scoring

corTect answer #9.-11. If #9.>2 then 5 else
if #9.=0 then I else
if #9.=1 and #10.=0 then 1 else
if #9.=2 and #11.=] then 2 else 3
discussion #12 If #12.=3 then 99 else 2*#12.+1
correct solution #9.-11. score the same as correct answer

Pde)

Characteristic

Coding Schema #'s

Logic of scoring

COrTect answer

#14., 16., 18.

If #14.<2 then c1=1 else
if #14.=2 then c1=2 else
if#14.=3 then cl=3 else c1=3
If #16.<2 then c2=1 else
if #16.=2 then c2=2 else
if #16.=3 then ¢2=3 else ¢2=5
If #18.<2 then c3=1 else
if #18.=2 then c3=2 else
if #18.=3 then ¢3=3 else ¢3=5
c=(cl+c2+c3)/3

symbolic

#13.- 18,

If #13.=I then 51=3 else
if #14.=0 then s1=I else
if #14.=1 then s1=2 else s1=#14.
If #135.=1 then s2=5 else
if #16.,=0 then s2=1 else
if #16.=] then s2=2 else s2=%14.
If #17.=1 then 53=5 else
if #18.=0 then s3=1 else
if #18.=1 then s3=2 else s3=#14.
5=(51+52+53)/3

correct solution

score the same as correct answer

discussion

sum of scores from P4a)-P4d)/4

P4f) Combined
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Characteristic

Coding Schema #'s

Logic of scoring

Correct Answer

all 5 correct answer
values from P4a -Pde

sum of 3 values/3

Discussion

all 4 discussion values
from P4a-P4d

surnt of 4 values/d

Correct solution

all 5 correct solution
values from Pda -P4de

sum of 5 values/5

Symbelic score the same as symbolic from Pde)
P35

Characteristic Coding Schema #'s Logic of scoring

aloebra #2., 3. Score is #3./#2.

symbolic #2.,10.- 13, 15. Score is (#1044 | +#12.4+#13.+715.)42

correct solution

#2.-8.,10.- 13, 15.

Let a=algebrz score, s=symbolic score
If (#4.+#5 57448, +4#15.+(#6.%(#0.-1)))=0 then
if a+s=0, then 1 else
if (5=0 and a>0) then 2 else
if {a=0 and 5>0) then 3 else
if {a>0 and >0} then 4
else if (4. +(#5.- 1437 +#8 +#15.+(#6.4(#6.-1)))=0 then
if a+s=0, then 2 else
if (s=0 and a>0) then 3 else
if (a=0 and s>0) then 4 else 5

conceptual

If (#1.-1y*(#1.)=0 then | else 3

P66 a)

Characteristic

Coding Schema #'s

Logic of scoring

COITect answer

#3., #0O.

Score is (sum(#3.+#6)/2)+1

algorithmic

#2.,4.,5.

If #2.=0, then
if #4.4+#5.=0 then score as 1, else
if #4 +#5.=1, then scare as 2, else
if #4.+#5.=2, then score as 3, else
if #4 +#5 =3, then score as 4, else
score as 3.

concepiual

If #7.=0, then score as 1, else score as 3.

correct solution

4t
b
=
n

use score from algorithmic
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Characteristic

Coding Schema #'s

Logic of scoring

correct answer

#12.

If #12.=3, then score is 5, else
score is #1241

algorithmic

#8. - 11.

Let s=#0 +#10.+#11.
If #8.=0, then
if s=0 then score as 1, else
if #9.+#10.=0 and #11.>0, then score as 2, else
if #9.+#10.=1, then score as 3, else
if #9.=#10.=1, then score as 4, else
score as 5.

correct solution

#8.- 1L

Use algorithmic score

P6c)

Characteristc

Coding Schema #'s

Logic of scoring

correct answer

#15., 16.

If #15.=0, then
if #16.=0, then score is 1, else
if #16.=1, then score is 2,
else if #15.=1, then
if #16.<2, then score is 3, else
if #16.=2 then score is 4,
else score is 5.

algorithmic

#13. - 14,

If #13=0, then
If #14.=0, then score as I, else
if #14 =1, then score as 2, else
else if #13=1, then
if #15.=0, then score as 1
else score is 5.

correct solution

#3. - 11

Use algorithmic score

Pod)

Characteristic

Coding Schema #’s

Logic of scoring

correct Answer #19. If #19.>2 then score 3, else score=#19.+1.
algorithmic #17. & 8. If #1 7= blank then blank, else
I #17.>1 then 5, else
If #18=97, then (#17+1) else score=#17.+#18.+1
algebraic #20. Score=2*#20.+1.
carrect solution #17.-19. If #17.>1 then 5, else

1f #1952 then 35, else
if #17+#18.4+#19.=0 then 1, else
if#17.=1 and #18.+#19=0 then 2, else
scare #17.+#18.+#19.
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Poe)

Characteristic Coding Schema #'s Logic of scoring
correct answer #24. If #24= blank then biank else

If #24 573 then 5 else score=#24.+1.
algorithmic #21.-23. If (#2 1=blank or #22=blank or #24=blank) then blank else

if #24 =4 then blank else

if #21.>1 then 5 else
if #22.=72 then 5 else
if #22 =0 then score=#23.+1 else
it #22.=1 then score=#23.42

atgebraic #25. If #24.=4 then 99 else score=2%#25.+1.
correct solution #11.-24 1f #24. =2 then

if (#21.>1 and #22.+#23.=0) then 3 else
score=4
else score=coryect answer score

P6 summary: Scoring Differentiation

Churacteristic

Coding Schema #'s

Logic of scoring

algorithmic #21.- 23, algorithm=a(section#)
If (aP6a=blank or aP6b=blank or aP6c=blank or aP6d=blank or
aPGe=blank) then blank else
score=Average of (aP6a, aP6b, aPac, aPod, aPoe)

correct solution #21.-24, score same as algorithmic

carrect answer

all 5 correct answer
values from P6a-P6e

sum of 5 values/3

conceptuat

Poa

score the same as conceptual Péa

algebraic

all 2 algebraic values
from P6d-P6e

sum of 2 values/2
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P13
Characteristic Coding Schema #'s Logic of scoring
Algorithm #1 4. If #2.=1 then e=1 else e=5
If #3.=1 then fd=1 else fd=3
If #4.=1 then sd=1 else sd=3
Let a=(e+{d+sd)/3
Arithmetic/ #5. score=code
Alpebra
Symbolic #6. score=code
Graph #H2,HT,#10-#11,#13 | HE2x87.=] & #10+#11.+#13. 4414 =0then 1 else 5
- #14.
Explanation #15.-24 1fall of #13. - #24 = 99, then 3, else 1
Frequency (ef1)
Number of #15. - #24 1f ef1=5 then 99 else

Explanations

{ef2)

(if #15.=1 then 1 eise 0)+(if #16.=1 then 1 else O)+(if #17. or
#18.=1 then 1 else 0)+(if #19. or #20.=1 then 1 else 0)+(f #21. or
#22.=1 then 1 else M+(if #23. or #24.=1 then 1 else 0)

Explanations
(ef2)

P14
Characteristic Coding Schema #’s Logic of scoring
Algaorithm #1.-7. If #2.=1 then e=] else e=5
If #3.<3 then val=} else val=5
If #4.=1 then va2=1 else val=5
Let va=(val+va2)/2
If #5.=1 then m=1 else
if #5.=2 then m=3 else m=3
If #6.=1 then fd=1 else {d=5
H #7.=1 then sd=1 else sd=3
Let n=(e+va+m+fd+sd)/5
Arithmetic/ #8 score=code
Algebra
Symbolic #9. score=code
Graph #10.-20. Let s=#14.+#15.+%17 +#]1 8.+#19.+520.
Let t=#15.+#18.+#19.+#20.+(if #14.=0 then 0 else 1)+(if #17.=0
then O else 1)
If #2.%4#10.=1 then
if s=0 then | else
if t<3 then 2 else
ift<5 then 4
else 5.
Explanation #21..32, If all of #21., - #32 = 99, then 5, else |
Frequency (efl}
Number of #21. - #32. If ef1=35 then 99 else

(if #21.=1 then 1 eise O)y(if #22.=1 then ! else 0)+(if #23.=1
then 1 else 0)+(if #24.=1 or #26.=1 then 1 else 0)+(if #28. or
#30.=1 then 1 else 0)
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Summary by Characteristic of P3, P4, P5,P6, P13, Pl4

Characteristic

Coding Schema #'s

Logic of scoring

Algorithm P3. P6, P13, P14 sum of algarithm scores/# of algorithm scares
Arithmetic/ P3,P6,P13, P14 sum of algebra scores/# of algebra scores

Algebra

Symbolic P3,P4,P5, P13, P14 sum of symbolic scores/# of symbolic scores

Graph P13, P14 sum of graph scores/# of graph scores

Correct Answer | P3,P4,Po sum of correct answer scores/# of correct answer scores
Correct Solution | P3,P4,P3,P6 sum of correct solution scores/# of correct solution scores
Discussion P3,P4 sum of discussion scores/# of discussion scores
Explanation P13, Pl4 sum of explanation frequency scores/# of explanation frequency
Frequency (efl) scores

Number of P13,Pi4 sum of number of explanations scores/# of number of
Explanations explanations scores

(ef2)

Conceptual P3,P3,.P6 sum of conceptual scores/#of conceptual scores
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Graphing Using Maple

Graphing Using Maple
Reference: Chapter P and Review Modules.
Team-Work to do in class and report is due at 5:45 p.m.:

Far each the following functions: describe its domain and range; explain if it has any symmetry {even or odd
properties); indicate the x-intercept(s) , the y-intercept and any asymptotes; and finally, provide your best skeich of
each graph.
fa)y=16x"— 16x+1; g(x}= 64x" —16x* 1 h(¥) = 64x° —16x" +1; Kx) = ¥ Bx-D7(2x-1);

4x
64x* —16x" +1

i) mix) sn(x) =

1
T g1 6dxt —16x7 +1

Bonus additional Work using technologies (graphic calculator, Maple or Live Math from the WebCal course).
This Team work is due in 1 week.

For each function that you studied before: plot graphs with a good choice of x and y-window; confirm all resulis you
previously predicied; read and state the coordinates of all “turning points™.

Some hints if you go to 5B 3 o use Maple:
First log in as usual and double click the Maple icon. You will obtain a blank Maple worksheet.
Here is how Lo start:

with{student):
[i=64%x"2-16%x+1;

plot{fx=-1..1};

solve(i=thx};

fsolve(d=0,x);

1250000000, (1250000000

pl()t(f',k‘:—“-l"..l,}’:()..30};
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Graphing Using Maple

L:=1/{5%x-1)"2

P
(Bx—1)
plot(lx=-1..1,y=0..40,disconi=true);
40

301

y 207

10-: |

TdE s 04020 't'l.'zrlj.'d;c'u'fé‘ 08 1

plot(Lx=-1..1,y=0..1,disconi=true);

4 o5 U 0.5 1

Try to imitate these instructions and enter algehraic expressions as you have see it done in the above example.
Note that you type in only afier the Maple prompt >, and on the next line Maple wiil reply to you.

END
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MAPLE LIMIT COMMANDS
There are two forms of the command: Limit (inert form), and limit (active form).

If you use the inert form, Limil, Maple just displays the limil in standard mathematical notation. This is what "inert"
mearns: no computtation is carried out.

If you use the active form, limit, Maple computes the value of the limit and displays it. Thus "active” means:
computation is carried out.

The following examples display the syntax of these commands and a clever way of combining these two forms.
Limit(3*x+3,x=-1)=limit(3*x+2x=-1);
hm x+2=-1
%= (-1)
Limit{(75x 2 3-45x A28 250 8 A 3-35% 2 24- 3 x=D=limig ({79 A 34 3 A 24 285/ (x A 3-35x A 2% 3) k=2 03

3 @
Tx -4z +2x-5 -39

" "
- 3 2 5
X =22 x7=3x"4zx-3

The examples above could easily be calculated using our limit theorems.

How about some of the more interesting limits that we tackled by approximation and graphs in sections 2 and 3
above?

We note that atl of these limits involved ratios of two functions, and in all cases the limit of the denominator was
zero, hence the limit theorem about the quosient of two functions does not apply.

Limit(({x" 2-1)* (x4 M2 # (-1 =1)=Hmit{({x * 2-1*(x+ 1))/ (2¥(x-1}),x=1);

GE-D G+

o

-2
=1 2r—2
Limit(sin(x)/xx=0)=limit(sin{x)/x,x=();
. sm{x)
Jites) =
r—0 7
Limit(x®sin{1/x),x=0)=Bmit(x*sin(1/x),x=(});
1
m x sin('—j =0
N X
X — U

The question that you might very well ask at this point is: if Maple will compute all of these limits for us so swifily
and painiessly, what is there for us to do?

The answer is not as simple as the question. A first attempt might be: when Maple computes a limit for us, it is in
effect telling us something about the function and its graph, so we must be able to interpret Maple's computation and

understand what it implies about the function and its graph,

We begin this process in the nexi sections.
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Limits Using Maple

Section #6 : Hall-Limits
We begin this section by Jooking at the graph of a function, f (x).

:=piecewise(li<x and x<l,x,T<=x and x<2,3-x); piot{l',x:(l..?.,y:ﬂ..z,color:b[ack,thickncss:ﬁ%, discont=true);
x —x<0andx—-1<«0

2y j—x=0andx—-2<0

0757 g2 abB GE 1 12 t4 15 1§ 2
x

1f someone asked us what the value of 1in”il f(x}is, what should we say?
=

First we try Maple.
Limit(f,x=1)=limit(f,x=1);
. x —x«<0andx—-1<0
lim | = undefined
r—=1 3-% l-x£0andx~2 <0
So Maple says the limit is undefined. Remember, our deﬁni[ioﬁ of the limit is a single number L that f{x) gets close
to when x getsclose o a .

From the praph of this piecewise defined function J (x) we can see that when x is less than 1 bur getting closer and
closer to 1, the values of f(x) are getting closer and closer to 1. However, when x is greater than | but geuting closer
and closer to 1, the values of £ (x) are getling closer and closer to 2. Thus, we can see what number f(x) is getting
close 10 as x gets close to 1 depends upon which side of 1 the variable x is on. To be able to deal with this kind of
situation we define what are calied half-limits.

Limit from the left:
We write lim f(x) and read it as "the limit of f (x) as x approaches a from the left" to refer to a single munber L

that f (x) gets close 1o when x gets close to a but is to the leftof a , Le. , x<a. ‘We can ask Maple to write (inert
form) or campute (active form) such limits by adding the word "left" to the command.

Limit({.x=1,left)=limi{f,x=1.1eft);
‘ x —x <Dandx—1<0
hirn { =1

y—i. 2—X l-x<0andx—2 <0

Limit from the right:
We write lin1 f(x) and read it as “the limit of f (x) as x approaches a from the right” to refer to a single number L

a—a”
that £ (x) gets close 1o when x gets close to @ but is to the rightof a4 le. .o <x. We can ask Maple to write (inert
form) or compute {active form) sich limits by adding the word "right” to the command.
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Limits Using Maple
Limit{f,x=1,right)=limit{f,x=1,right);
) x ~x<0andx—-1<0
Jites) { =2
y 1+ - l-x20andx—2 <0

Connection between half-limits and the whaole limit:
There is a Thearem that connects these ideas.

Theorem: The whole limit, lim f(x) , exists, and is L if and only if:
X—3ti

(1) the half limit from the left, lim f(x}, exists;

(2) the half limit from the right, lim f(x) , exists;

(3) the two half limits are equal, and equal 1o L, i.e,, lim f(x) = lim f(x)=L
1—a i’
Problem for YOU to do

xA2-1 , x -1, x<-1

Page A4 - 5/8

<-1
Use Maple to plot the function f(x)={2%x-1 , -1€£x<1={2x~1 , —1<x<1 onthex-inwerval

1-x22 ,  I<x 1-x* ., I<x
(-3,3].
lim f(x) lim f(x) lirnl f{x)
=17 x—=-1" 1=
Predict what the following half limits are: lim f{x} lim f(x) limu f(x)
x—0" =07 X

lim f(x) lim f(x) bmf(x)
Xeer]” x=1* x—1
Use Maple to compute each of these limits and see how good your predictions were,

Section #7 : Infinite Limits
We begin this section by looking at another graph.

fi=(x"2-1(10%(x-1)"3):

2
P 1 x7-1
AE T
10 3
(x—1)
plot{f,x=-1..3,y=0..8,color=biack,thickness=2 discoui=true);
7
&
5
y4
3
3
] L 1 3 3

If someone were 10 ask you what is the value of 1im f(x}, what would you respond?
1=l

This does not {it our original definition using € and &, but a new definition can be made to cover this case. See me if

you wanl to see this definition.

We should check our answer using Maple.
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Limit({,x=1)=limit({T,x=1);

Hopefully you guessed in advance what this answer was going to be.
When the answer to 4 limit is infinite we refer to the limit as an "infinite limit",

Warning: Some textbooks refer to such limits as existing, but infinite. Other textbooks say that the limit does not
exist, but that the limit diverges to infinity. Whatever words are used, the notation for this situation is the sume:

lim f(x)=e=.

A=

Now we examine another example.
fi=(x " 2-1HCROHx-1)"2);

P
1 x7-1
JE o
20 2
(x=1)
plot(f,x=-1..3,v=-8..8,colar=black,thickness=2 disconi=true);
-
B
y4
i o 1 . 2 3
-4
b

If someone were Lo ask you what is the value of lim f(x), what would you respond?
x—1

We note that the behaviour of the function is different on each side of x = 1, so perhaps half limits would be
appropriate here.

We should check our answer using Maple.
Limit{f.x=1.lefi)=limit{l,x=1 lefl); Limit(f,x=1.righQ=lmit{{,x=1,righi); Limit(f,x=1)=Hmit(l,x=1};

. 1 7:2——1
i :_)—ﬂ— o —= ~CD
x=1- 7" (x-1)7
. 1 :::2—-1
SO 2 =%
=1+ " (x—1)
) 1 xz—-l
im — = undefined
20 2

x=1 " (x-1)°

We note that if we just asked Maple for the whole lmit here we would not have as much information as the two half
iimits supply.

Note also that Maple seems 10 be following our Theorem concerning half limits, even for infinite limits. That is,
because - ==, Maple says that the whole limit is undefined. I we had asked Maple for half limits in the previous
problem il would huve said that they were both e, hence it reported the whole limit as .
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Probiem for YOU to do
3
Piot the function f(x)= P—A—l-———,— .
(x=D)(x+1Dx"

fim f(x)  lim f(x) Hmf(x)

=]

From the graph predict the following limits: lim f(x) lim f(x) ling f(x)
x—=0" T

a0

lim f(x) limf(x) hmf(x)
=17 =" x4
Use Maple 1o compute the limits. How well did you predict the results?

Section #8 : Limits at Infinity
This is the last topic for today.

Sometimes, instead of asking what happens 1o values of f (x) as x gets close to a number a , we want 1o ask about
what happens when x approaches one or the other edge of the x-axis. In the language of limits, such limits are called

limits at infinity, and written as lim f(x) and Hm f(x) for the left and right edges respectively.
A 00

Note that our definition in terms of € and & does not work properly for this type of limit.
Any person wishing to see the appropriate definition for this type of limit can ask me about it.

We have already spent considerable time investigating the behaviour of functions at the edges of the x -axis, in
particular for rational functions. We know from those efforts that functions either head towards -=, head towards =,
approach a constant value ¢, or behave in a periodic fashion (like sin( x )). In the case where a function approaches a
canstant value ¢ , we say the the function has a Horizontal Asymptote {HA), and is asymptotic to the line y = ¢ .
Thus, this type of limit provides us with symbolic notation and a way of describing such situations.

That is, f{x) is asymptotic to y = ¢ at the left edge if and only if lim f(x)=c.
Xy —e
Similarly, f( 1 ) is asymptotic to y = ¢ at the right edge if and only if Iim f(x)=c.
P G L]

Suppose we look at an example.

We begin with a graph of the function.
Fr=( 29N 24 2% 41 (XA 245 1); plot(Tx=-100..100,y=0..3,color=black,thickness=2};

l}
oZ2x +2x+1
JgET o
2
" +x+1

[ERERENF]
G 1) B Ot

=

1.4

a3

e B0 B0 40 20 Y X 4E L8 B0

From the graph can you tell the values of the following limits: lim f{x) and lim f(x)
Xy —on K==

Now we use Maple to compute the answers.
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Limit(fx=-infinity)=limit{l,x=-infinity); Limit(f_.x:inﬁnity):iimit(f,x:ﬁnﬁniI;y);

, 2x2+2x+1
lim EE——

2
x—=>(=00) x +x+1

]
2x +2x+1
— o3

n
= x“+x+1

Lab Report Warning: Do not open this section until you have completed your journey through all of the
sections above.

Second Warning: Do not open this section until you have completed your journey through all of the sections
above.

Third and Final Warning: Do not open this section until you have completed your journey through all of the
sections above. Problem for YOU to do

3x° -3x+10
-2x% +3x* -4
Based on the graph, predict the values of the following limits: lim f(x) and lim f(x)
A —= Xy

Plot the graph of f(x) =

Use Maple to calculate the limits and hopefully verify your predictions.
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Feedback Quiz

Quiz

Name: Student #:

Given the graph below of the function f'(x), on the same set of axes sketch a reasoned graph of f(x). Be sure to
write clearly the steps of reasoning that you used 10 deduce the shape and features of your sketch. You may use the
back of this sheet to write such explanations.

N.B.  The graph below of f '(x) is that of a polynomial so there are no asymptiotes!

4.
-+

Lifx)

(P

[ 24

b
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Feedback Quiz - Solution

Quiz: Solution

Given the graph below of the function f '(x), on the same set of axes sketch a reasoned graph of f(x). Be sureto
write clearly the steps of reasoning that you used 10 deduce the shape and features of your sketch. You may use the
back of this sheet to write such explanations.

N.B.  The graph below of f ‘(x) is that of a polynominl so there are no asymptotes!

5
Solution: il
N.B.  The most common error is to forget that you are looking at the I i
-
l

graph of £’ and trying to deduce from it characteristics of f. The
key is to remember that the direction (increasing/decreasing) of
is connected to the sign (+/-) of f ' and that the concavity

(up/down) of f is connected to the direction ; A1y :
(increasing/decreasing) of f ',

Step 1: Locate the x-intercepts of f'. L R
We nate that the x-iniercepts of £ lie at approximately x = -0.6 and 2.6. These TV V7
points are endpoints of intervals where ' may change sign. ; ]
Step 2: Locate intervals where the graph of £ lies above (below) the x-uxis.

Looking at the graph of /' we note that on the x-intervals (-4,-0.6) and (2.6,4) the graph is above the x-axis, i.e., the
function f* is positive there. Similarly, we note that the graph of f* lies below the r-axis on the »=intervals {-0.6,1)
and (1,2.6).

What do the observations from Step 1 and Step 2 tell us about the graph of 7

The graph of fis increasing on the x-interval {-4,-0.6), reaches a focal maximum at x = -0.6, decreases on the
x-interval (-0.6,1), reaches a stationary point at x = 1 (because even though ' is zero there it does not change sign,
so f does not change direction as it does at a maximum or minimum), decreases on (1,2.6), reaches a minimum at
x=72.6, and increases on the x-interval (2.6,4).

Steps 3 & 4: Locate the focal maxima/minima on the graph of f ', and the x-intervals where f* has a single
direction.

We note that, starting at the left edge, the graph of f 'is decreasing, reaches a minimum value atx = -0.15, increases

to a maximum value at x = 1, decreases to a minimum value at x = 2,15, and then increases to the right edge. That is,

' is decreasing on (-4,-0.15), has a minimum atx = -0.15, is increasing on {-0.15,1}, has a maximum atx =1, is

decreasing on (1,2.15), has a minimum at x = 2.15, and then is increasing on (2.15,4).

What do the observations from Steps 3 & 4 tell us about the graph of £7

The graph of fis concave down on the x-interval (-4,-0.15), changes concavity at a point of inflection with
x-coardinate of x = -0.13, is concave up on the x-interval (-0.15,1), changes concavity at a point of inflection with
y-coordinate of x = 1, is concave down on the x-interval (1,2.15), changes concavity at a point of inflection with
x-coordinate of x = 2.15, is concave up on the x-interval (2.15.4).

Ta make it easier (o see the graph of f that we are preparing we enter the information that we determined above in a
table.

x |4 -1.6 -0.13 1 2.15 2.6 4 j'\ i
P Ii‘ \
; N
- M b SP [ \
~ had ~ ]
» m , 7Y -
S - I‘ \\ i[
- - - PI ~{PIL|{T ] PL |~~~ |~ i L AL
Y VW
f’ + 0 - - -0 l- - -1 0 1+ “\ f" \ ;j
il [ ]
~ ~ ~ n » M . n - - -

Note that we do not actually have any values of £, thus we do not know any y coordinates. In Caleulus II (or in
Physics) we learn how to estimate these values. For now, it is only the rough shape that we are worried about.
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Feedback Quiz Coding Schema

Cading Schema
Number of lefi to right passes through the graph of £
L. Singie pass
2 Two passes
3 Organizational principle unclear

Foliow general pattern of looking at sign of 7' first and then direction of £/

1. Yes
2. Ciearly not
3. Unclear

Presence/absence of graph

i. Complete Graph Present
2. Incomplete Graph Present
99. Absent

If 3. above is coded as 99, then code 4 - 11 & 20 as Y9.

4.

10.

11.

13.

For each zero of £/, is an Extrema/Stationary Point of f drawn on the graph: Count # of omissions

For each zero of [/, is the correct Extrema/Stationary Point of £ drawn on the graph: Count # of errors or
omissions

Pattern on graph of intervals of increase and decrease of f': Count # of errors or omissions
For each change in direction of £, is a Point of Inflection of f drawn: Count # of errors or omissions

For each change in direction of £/, is the correct Point of inflection of f drawn on the graph: Count # of
erTors Or omissions

Pattern of intervals of concavity on graph of f: Count # of errors or omissions

Drawing of stationary point:

1. drawn with zero slope and change of concavity

2 drawn with one of change of concavity but not zero slope

3. drawn with zero slope but not with change of concavity (i.e., drawn as extremum)
4. nothing special drawn at this point

Verbal Explanation of relationship between sign (-/+) of /' and direction (~/~) ol f

1. only correct statement(s)

2. mixture of correct and incorrect statements
3 only false statement(s)

95. no statement

Verbul Explanation of relationship between zeroes (0) of £’ and extrema or stationary points of f

1. anly correct statement(s)

2, mixture of correct and incorrect stalements
3. only false statement(s)

99, no statement

Verbal Explanation of relationship between direction (/) of f' and concavity (~/-} of f
only correct statement(s)

mixture of correct and uncorrect statements

only false statement(s)

0. no statement

WD L BT ke
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14. Verbal Explanation of relationship beiween extrema (Max./min) of f ' and points of inflection of f
1. only correct statement(s)
2. mixture of correct and incorrect staternents
3. only false statemnent{s)
99, no statement
15. Presence/absence of table
1. Complete Table Present
2. Incomplete Table Present
99. Absent
1f 15, above is coded as 99, then 16 - 20 below are all coded as 99.
16. Tabular Explanation of relationship between sign (-/+) of f ' and direction (+/+) of f
1. only correct statement(s)
2. mixture of correct and incorrect statements
3. only false staternent(s)
99. no statement
17. Tabular Explanation of relationship between zeroes (0) of f* and extrema or stationary points of f
1. only correct stalement(s)
2. mixture of correct and incorrect statements
3. only false statemnent(s)
99, no statement
18. Tabular Explanation of relationship between direction (~/-) of f* and concavity (~/~) of f
1. only correct statemeni(s)
2. mixture of correct and uncorrect statements
3. only false statemeni(s)
99, 1o statement
19, Tabular Explanation of relationship between extrema (Max./min) of £ " and points of inflection of f
1. only correct statement(s)
2. mixture of correct and incorrect statements
3. only false statement(s)
99. no staternent
20. Number of discrepancies between table and graph - count of errars or omissions (nate if either of 3. or 17.

is coded as 99, then this is automatically coded as 99).
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201-NYA-05 Calculus I Worksheet on Lines
Name: Name:
Name: _ Narme:

In the problems below, show each and every step. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. If you need more space, use the back of the previous sheet,
1. Given the graph below with a line and a point on the 3x3 grid:
a.  Draw a line through the given point and paraliel to the given line.
b. Use the point-slope formula for a straight line to write an equation for the line that you drew.
c.  Use the point-slope formula for a straight line to write an equation for the line through the given point but
perpendicular to the given line.
Sotutions:

[}

N

—
N

|
™Y

id

The graph on the right shows several straight lines:

4. Which lines have positive and which lines have negative slopes? /

b. Rank these lines from the steepest to the least steep.

¢. Select any pair of lines that have the same slope.

d. Select any and all lines which represent proportional
relationships between the dependent and independent variables.

Solutions:

oo,
S
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The graph on the right shows several straight lines. Wherever
possible match a line with one of the equations below. Note that
some equations may not match any lines and some lines may not

match any equations.
¥+ 1 _ V- 5

a. matches line because
x—=1 x+1 '
b. y= 3 matches line because
c. x=-6r-2;y=2r+ 3 matches line because
d. y=4x matches line because
e. 3x-3y+4=0matches line because
y—-3 .
1. A =72 matches line because
-

4. The praph on the right shows the line y = mx + b. Sketch each of the
lines given below on the same grid and be sure to identify each line

(colour code or label). Explain your reasoning clearly.
a. y=mx-b

b, y=-mx+b

¢c. y=-mx-b

T

Page A6 - 2/61

o

A1

N

5. 'The graph on the right shows line segments A and 11
B. 10
a. Derive an equation for the line of which Aisa 9
segment. Show all wark.
b. Determine the height on line segment B when 8 B
x = 3. Show all work. 7 m=2
Solutions: 6 A
5
4
3
2
1 B m=-1
-1 1 2 3 4 5

[
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In the problems below, show each and every step. Explain, in sentences in English, what you are doing as if you
were wriling a solution manual for other students. I you need more space, use the back of the previous sheet.
1. Given the praph below with a line and a point on the 3x3 grid:
a. Draw a line through the given point and paralle! to the given line,
b. Use the point-slope formula for a seraight line to write an equation for the line that you drew.
c. Use the point-slope formula for a siraight line to write an equation for the line through the given point but
perpendicular to the given line.

Solutions:
b. We note that the given point has coordinates (-1,1.25). ki 7
We note that parallel lines have the same slope, and the given ,/
line passes through the grid points (0,-1) and (2,%), hence has 5.
LY —f— 1 EV4
slope m=('/2 ¢ 1))=A+1=£—_—§, f/j‘
2-0 2 2 4 l/ " |
Thus, the line we drew has equation
y—125 3 y-125 3 ) y
LT o g Tt =T
x—(-1) 4 x+l 4 Bl b1k dAENE
Note that there is no need at this time to rewrite the equation . d
in slope-y-intercept form, T
c. We note that if two lines are perpendicular, then the product /’
of their slopes is -1. Thus, an equation for a line o
perpendicular to the two fines already drawn will have slope
n, where mx 3% =-lor m= _3 < =3

We know that the perpendicular line that we seek passes through (-1,1.25).

'—1.2 —1.2 4
Thus, the line we seek has equation 22125 = 4 or -LLE =
x-(~1) 3 x+1

2

The graph on the right shows several straight lines:

2. Which lines have positive and which lines have negative slopes?
b.  Rank these lines from the sieepest to the leass steep.

c. Select any pair of lines that have the same slope.
d

3
. Select any and a1l lines which represent proportional P c
relationships between the dependent and independent variables. \ ~ /// ;
Solutions: = L e

R i .
a.  Lines with positive slope rise {increase in y-value) as you move from = / 7’4:\‘* #
left to right along them. That is, as x gets larger (left io right), y gets / %

larger {bottom 1o top). Lines with negative slope fall (decrease in
y-value} as you move from lefi to right along them. That is, x gets
larger (left to right), y gets smaller {top to bottom). It is important to
notice the convention that when we discuss increasing versus
decreasing, we only discuss it in left to right terms. If we did not
have this convention, then any line {other than horizontal ones) could seem to be increasing, merely by choice
of direction, left to sight or right to left.

Following the convention outline above: a, b, ¢, d are increasing, hence have positive slopes; [ and g are
decreasing, hence have negative slopes; e appears to be horizontal, hence has zero as its slope.

b.  Given that there is no scale on the graph this is not so simple to do. We note that the larger the absoluie value
of the slope, the steeper the line. That is, we do not care about the sign of the slope, just its magnitude or size,
when measuring steepness. It seems reasonably clear that a is the steepest line, b appears ever so slightly
steeper than g, and since ¢ is parallel, it too is a touch steeper than g, then g, followed by f, which is a touch
steeper than d, with the horizontal line e being the least sieep. To give this in list form, a, {b-c}, p,f. d, e.

c. Only parallei line have the same slope, and the only parallel lines are b and ¢,

d. Two variables, say y and x, are proporiional if y = kx, where & is some constant, called the constant of
proporticnality. We note that this means that the point (0,0), i.e., the origin, lies on all graphs of proportional
relationships. The only lines satisfying this condition are a, b and f,
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201-NYA-05 Caleulus Worksheet on Lines - Solutions
3. The graph on the right shows several straight lines. Wherever A
possible match a line with one of the equations below. Note that // @
some equations may not match any lines and some lines may not
match any equations. b
+ —
yl_3-3 matches line 2. We note that there is no scale on \ '///'c
1 -1 x+1 . . ' o — /f/ iy
either the x-axis or the y-axis. This makes the task quite difficult 20 et 0 >
because the obvious clue from the given equation it that the line 7&\%\“_‘__ ;
passes through the points (1,-1) and (-1,5), and hence has a slope \\ 5
of é—l(——;) = —6;)- = =3 . Further, this line does not pass through
the origin, because -1 = 9_'*:1 = 9—:—% = -5 . Thus, the only line
0-1 0+1

that could possibly match the given equation would be g.

b. y =3 matches line e, if it matches any line, because y = 3 is the equation of a horizontal line and g is the
only horizontal line, Of course, whether it matches or not depends upon the y-axis scale, which was not
given.

- . - 2 1
c. x=-6r-2;y=2t+3: from the parametric equations we see that this line has slope —= -—5, and passes

through the point (-2,3) when ¢ = 0. There are only two lines with negative slope, f and g. To check if the
parametric equation describes a line passing through the origin, we solve two equations for 7, created by
substituting x=0and y=0:0=-61- 2= 6t =-2 = t=-Ysand 0= 2 + 3 = -2r=3 = 1= -3/2. Since these
two values are not the same, the parametric line does nat pass through the origin. This means that the only
line that this equation could match would be g, but this is not the case if the answer to b. or a. is correct.

d.  y=4x: this equation describes a positively sloped line that passes through the origin, hence it can only
match a or b. Without a scale on either axis we cannot know if it truly matches either of these or not.

e. 3x-5y+4=0: rewriting this equation we obtain 5y = 3x + 4 = y = (3/5)x + (4/5), a line with positive slope
and a positive v intercept. Without scales on the axes we cannot know for sure, but d is the only possible
line to match this equation.

¥=3
x—4
can also see, by substituting (0,0) into the equation, that the line does not pass through the origin. This
feaves two candidates, ¢ and d, both with positive slope and not passing through the origin. We note that

=2 : this equation describes a line with a positive slope of 2, passing through the point (4,3). We

) —

. " o )
the w-intercept of the given line is: =

=2 & y~3=2(~4) & y=-5. Wealso note that the

x-intercept of the given line is: 0 _2 =T es ~3=2y-8 & 2x=5& x=3% . Only line d matches both
x-—

of these two criteria, a negative y-intercept and a positive x-intercept, thus if any line matches it is d.
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4. The graph on the right shows the line ¥ = mx + b. Sketch each of the
lines given below on the same grid and be sure to identify each line
{(colour code or label). Explain your reasoning clearly.

a. y=mx-b
b, v=-mx+b
c. y=-mx-b

Solution:

a. From the given line we observe that the slope, m, s clearly negative,
and the y-intercept, b, is clearly positive. Thus, the line in a. should
be parallel 1o the given line (same slope), and with negative )
y-intercept, but of the same absolute value as the given line. e

b.  This line passes through the same y-intercept, but has a slope of the
same absolute value, but opposite in sign, hence positive. Such a Hne should be symmetric to the original line
through the mirror of the v-axis. ‘

¢. This line has the same y-intercept as the line in ., but has the slope of the line in b. In this case, the line and the
original line will be symmetric about the x-axis.

3. The graph on the right shows line segments A and 11
B. 10
1. Derive an equation for the line of which A isa 9
segment. Show all work.
b. Determine the height on line segment B when 8 _
x=3. Show all work. 7 m=2
Solutions: 6 A
a.  We have been given the slope, m = 2, and we note 5
that the line passes through the point (2,3). Thus,
- 4
the tine has equation: y=3 =2. 3
x-2
b. Just as in the previous case, we know the slope, 2 B
m=-1 and a point {2,3). Thus, an equation for this 1 m=-1
line is: > —3 =], Substituting inx=3 we -1 o 1 2 3 4 5
x-2 -1
obtain:
y=3

— =l y-d=-lay=3i-1le y=2

Alfternatively, we can just note that since the slope is -1, and slope is the ratio of “rise” to “run”. To go from
x=2twx=23, weneed a “run” of 1, hence a “rise” of -1, so the y-value would be 3-1 = 2.
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201-NYA-05 Caiculus I Worksheet on Power and Exponential Functions
Name: Name:
Name: Name:

You are sitting in the Science Centre, doing Calculus homework, and your best friend from High School, now a
student in Social Science, comes over and starts reading over your shoulder. The question that you are reading says:
a. Givenf(x)=x" and g{x) = x*, both have “U" shaped graphs. If they are drawn on the same set of axes, how
can you tell their graphs apart?
Your friend says “how can you tell the difference”. In a short paragraph, writing complete sentences, and using the
functions in a. above 1o illustrate, explain to your friend how we distinguish between the graphs of these two
even-powered power functions.

The next question that you read says,

b. No power function with positive exponent has any asymptotes, but all power functions with negative
exponents have both vertical asymptotes and horizontal asymptotes. Explain where (this means in terms of
x-values) and why a power function like i(x) = x% has: (i) a vertical asymptote; (i) a horizontal asymptote.

Your friend watches you and then asks “what does “has a vertical asymptote™ mean, and what does “has a
horizontal asympiote” mean. Answer your friends questions first, then answer b. as well, all in a short paragraph,
using complete sentences.

The next question that you read says,
c.  Givenf(x)=2"and g(x) = x*, one is a power function and the other is an exponential function. Which is
the power function and which is the exponential?
Your friend says “how can you tell the difference”. In a short pasagraph, writing complete sentences, and using the
siven functions to illustrate, explain to your friend how we distinguish between a formuta for a power function and
one Tor an exponential function.
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The next question that you read, a continuation of c. above says,

d. Use the grid on the right to sketch graphs
of both f{x) and g{x). (Distinguish 513
berween the two by using two different
colours, or dashed and solid lines,
explaining which function corresponds to 2’5
which curve.) Which function dominates
at the right edge? "
Your friend watches you draw your sketches, and &L
then asks “what does dominates at the right edge
mean”? Draw your sketches as per instructions in 15
b. above, and then write a short paragraph, using
complete sentences, referring to your sketches as
an illustration, to explain what is meant by it
“dominates at the right edge”.
5
" B A ¥ F 3 3 e

The last question that you read says,
e. Some exponential functions are referred to as “growth” and others as “decay”. Give an example of a
formula for each kind.

Your friend watches you write your two examples and sees you label one as growth and the other as decay, and then
asks “when vou look at a formula of an exponential function, how do you decide which is growth and which is
decay, and what do the words growth and decay mean here™. Give your examples as per instructions in €. above,
and then write a short paragraph, using complete sentences, referring to your examples as an illustration, to answer
your friend’s questions.

growth function example: decay function example:
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You are sitting in the Science Centre, doing Calcuius homework, and your best friend from High School, now a
student in Social Science, comes over and starts reading over your shoulder. The question that you are reading says:
a. Givenf(x)=x"and g(x) = x*, both have “U” shaped graphs. If they are drawn on the same set of axes, how
can you teHl their graphs apart?
Your friend says “how can you tell the difference”. In a short paragraph, writing complete sentences, and using the
functions in a. above to illustrate, explain to your friend how we distinguish berween the graphs of these two
even-powered power functions.
Solution:
We know that the graph of a power function with an even positive integer power is “U” shaped. However, we
also know that the higher the power, the higher the value of the function when [x| > 1. That is, for a given
vertical line (i.e., a particular value of x), where the vertical line lies either to the left of x = -1 or to the right
of x = 1, the vertical line intersects the power function of lower power first, and then the other. For example,
if x = .2, then f (-2) = (-2)* = 4 < g(-2) = (-2)* = 16. We usually say that the power function of higher power is
“steeper” at the edges than the other. However, we also notice that for -1 <x <1 (or [v| < 1), the power
function with lower power is higher. For example, f {5) = (V2 P=1y»g(h) = (V) = /16

The next question that you read says,

b. No power function with positive exponent has any asymptotes, but all power functions with negative
exponents have both vertical asymptotes and horizontal asymptotes. Explain where (this means in terms of
x-values) and why a power function like fi(x) = 1 has: (i} a vertical asymptote; {if) a horizontal asymptote.

Your friend watches you and then asks “what does “has a vertical asymptote” mean, and what does “has a
horizontal asymptote” mean. Answer your friends questions first, then answer b. as well, all in a short paragraph,
using complete sentences.

Solution:

A function f (x) is said to have a vertical asymptote at x = a if, as x values get closer and closer to a, the f (x)
values get larger and larger in absolute value, without any “bound” or number beyond which they do not
grow. On the graph, this means that as x gets closer and closer to 4, the graph gets steeper and steeper,
looking more and more like a vertical line, in particular, the vertical line x =, without actually touching the
vertical line ¥ =a. Thus, a vertical asymptote is a feature of a graph in the “middle” part of the graph,
because it occurs at an actual value of x.

A Function f (x) is said to have a horizontal asymptote at the edge of the graph if, as x values either approach
- or = {the left and right edges respectively), then f (x} values approach some constant value, c. The
horizontal line y = ¢ is said to be the horizontal asymptote, but the asymptote occurs at an edge of the graph.
Looking at the graph, we would notice that at an edge, the graph is becoming more and more like a
horizontal line, in particular, the horizontal line y = ¢.

Power functions of the form ', where r < 0, have a vertical asymptote at x = 0 (the y-axis), and a horizontal
asymptote, y = 0 (the x-axis), at both edges. The reasoning for these conclusions is as follows: when x is close
to 0, then || is small, hence 1/}x] is large. Thus, the closer that x gets to 0, the closer x"=1/x" (where r <{ so
-r > 0) gets to infinity. Similarly, when [x| gets very large (at either edge of the x-axis), then 1/]x| gets very
small, i.¢., close to 0, and so does x" = 1/x”,

Numerically we can examine the following tables of numbers, using fi(x) = x>, to see these phenomens in
action:

X -0.1 -0.01 -0.001 0 4.001 0.01 0.1

Iixy | -10° -10° -10* undefined 10° 10° 10°

We notice that in the table above, as x values get close to 0, but are negative, the Ji(x) values head towards -=,
Similarly, as x values get close to 0, but are positive, the /i(x) values head towards =, This pattern shows us
that (v) has a vertical asymptote at x = 0.

x -1’ -10° -10° i} 10° 100 10

R(x) 1077 21018 107 undefined 10° 1018 10+

We notice that in the table above, as x values get closer and closer to either -= or , the h(x) values seem to get
closer and closer to 0. ‘This pattern shows us that /2(x) has a horizontal asymptote at both edges.
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The next question that you read suys,

¢. Givenf(x) = 2" and g(x} = x7, one is a power function and the other is an exponential function. Which is

the power function and which is the exponentizl?

Your friend says “how can you tell the difference”. In a short paragraph, writing complete sentences, and using the
given functions to iliustrate, explain to your friend how we distinguish between a formula for a power function and
one for an exponential function.
Solution:
Both types of functions have the form coefficient (base)™™™™", A power function has a variable value for the
base, but a constant value for the exponent. Thus, g(x) = x*, with the variable x as base, and the constant 2 as
exponent, is an example of a power function. An exponential function has a constant value for the base, but a
variable value for the exponent. Thus, f (x) = 2°, with the constant 2 as base, and the variable x as exponent,
is an example of an exponential function. Note that there are two other possibilities: we could have a function
where both the base and the exponent are constants, e.g., /i(x) = 2, but really this is just a constant function,
namely /1(x) = 8; we could also have a function where both the base and the exponent are variable, e.g.,
jx) =" this is neither an exponential nor a power function. Later in the course we will have te devise a
special method just to deal with nasty functions like this one.

The next question that you read, a continuation of c. above says,
d. Use the grid on the right to sketch graphs

of both f(x) and g(x). (Distinguish S0 TEdI = X2 ,"
between the two by using two different a
colours, or dashed and solid lines, 25T bhteack =12"x III ;
expiaining which function corresponds to F-=
which curve.) Which function dominates > =

at the right edge? £

Your friend watches you draw your sketches, and

h

.
[
ey

then asks “whai does dominates at the right edge 7
mean™? Draw your sketches as per instructions in - e
b. above, and then write a short paragraph, using - L0 ¥4
complete sentences, referring to your sketches as ¥
an illustration, to explain what is meant by 5 -
“dominates at the right edge”. S =
Solution: — e
3 1 3 5]

We say that one function, in this case f (x), A . “
dominates another function, in this case g(x), at

the right edge of the graph, if, when the values of x get larger and larger (this is what is meant by the right
edge), the values of the first function (in this case 2) are increasingly larger than those of the second function
(in this case x*). In a graph, a function having a larger value than another means that, for a fixed value of x,
i.e., on a vertical line, one function intersects the vertical line at a higher y value. We can see that even though
the functions in this example reverse position twice, at the right edge of the graph 27 is above x*, and the gap
between them is growing larger as we move further to the right.

The last question that you read says,
e. Some exponential functions are referred 10 as “growth” and others as “decay”. Give an example of a

formula for each kind.
Your friend watches you write your two examples and sees you label one as growth and the other as decay, and then
asks “when you look at a formula of an exponential function, how do you decide which is growth and which is
decay, and what do the words growth and decay mean here”. Give your examples as per instructions in e. above,
and then write a short paragraph, using complete sentences, referring Lo your examples as an illustration, to answer
your friend’s questions.
Solution:

growth function example = 2° decay function example = (V)
There are two types of exponential function graphs. One type has increasingly larger values of y asx
increases (the graph heads upwards as we move our eyes left to right). The other type has decreasing values
of y as x increases (the graph heads downwards as we move our eyes left to right). Increasing exponential
functions are referred to as “growth” since they are often nsed to model such things as population growth.
Decreasing exponential functions are referred to as “decay” since they are often used to model such things as
radioactive decay. Both types of exponential functions have the form coefficient (constant bage) e expanent
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but growth functions have a constant base which is larger than 1, while decay functions have a constant base

which is smaller than 1 (but larger than 0 since it is difficult to understand what would be meant by raising a

negative base to non-integer exponent values). Thus, since 2 > 1, we can use 2* as an example of a growth

function. Similarly, since 0 <%z <1, we can use (¥2)" is a decay function.

Note: 1) In the above we are assuming that the “coefficient” is positive. Should the coefficient be
negative, the graphs described above would be flipped about the x-axis, and would generally no
longer work as models for population growth or radioactive decay.

ii. There is an alternative method of writing exponential functions. While this is not the
appropriate place for a complete treatment of it, what follows is a brief discussion. We can say
that all exponential functions can be written in the form: coefficieni (base )", usually this is
written as Ce™.

(1) What is so special about hase e that we should fix upon it? Mathematicians like to “joke”
that physicists (sound levels, seismic disturbances, etc.) and chemists (pH) use base 10
because they count on their fingers and toes, and biologists {population growth) use base 2
because they count on their hands and feet. The truth is that base 10 is pretty much built
into humans, not just our fingers and toes, but all our senses. That is, a sound has to be 10
times a5 loud before we can really perceive the difference, a star has to be 10 times as bright
before we can see that it is brighter, etc. In defence of biologists, base 2 really does make it
easier to caleulate such things as doubling time in a population. Why then do
mathematicians use base e? It turns out, and 1 hate to do this, that about half-way through
the term we will know precisely why. For now, all I can say is that caleulations done in
Calculus are much cleaner and simpler if we use base e, hence we will do this.

(2) How does e compare to ¢*? How much you understand of the following discussion will
depend upon what you already know, but do not panic since we will be reviewing or learning
about this topic later. Since mathematicians are hooked on base e for exponential functions,
they also use base e for logarithms, which are the inverse functions for exponentials (more
about this in a week or two). In fact, mathematicians use base e logarithms so much that
instead of writing log (x) they write In(x), where In (pronounced like “lawn”) is short for
either “logarithme naturelle” or “Naperian logarithm” (after J. J. Napier who was the first
to really use base e). Hopefully you remember about the relationship between inverse
functions (if not, fear not, we will cover it soon). The key is the notion that f (f (x)) = x and
£ MF (x)) = x, which in the case of ¢* and In{x) gives us the following two identities: o = x
and In(e”) =x. You may find these more familiar as 10" = x and log(1{F) =x. Using the
first identity, €™ = x, and replacing x with g, we obtain &™) = . Thus, &° = (™) = '™,
that we can use &° interchangeably with e, with k = in{a).

(3) We know that when we represent the family of exponential functions as being of the form
Co*, we talk of two subfamilies, decay functions, where 0 <a < 1, and growth functions,
where 1 <a. What is the corresponding classification when we represent exponential
function as being of the form Ce™? First we note that from above k = In(a). Second we note
that when a = 1, then k =In(1) = 0. Thus, 0 <a <1 is equivalent to saying that
.o < k= In(g) < In(1) = 0, and 1 < a is equivalent to saying that ¢ = In(1) <Infa) < k. Thus
decay corresponds to k < 0 and growth corresponds to 0 < k.

50
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201-NY A-05 Calculns Worksheet on Polynomials
Name: Name:
Name: Name:

In the problems below, show each and every step. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. If you need more space, use the back of this sheet.
1. Given the polynomial function f(x)=x(x- 1) {x- 2" (x+ 1 (x + 3)%
a. Withont muliiplying this out and placing it in standard form, determine the degree, leading coefficient and
constant term of £ (x). :
b. Determine all the zeroes of this function, hence all of the x-intercepts of & graph of this function.
Determine the “shape” of the graph “nearby” each x-intercept.
¢.  Without computing a table of values for the function, sketch a graph of f(x), explaining how it accurately
portrays all information gleaned in a. and b. above.

Solutions:
2. Given the graph of a polynomial function g on the right, deduce a possible -""l
formula for g. Explain your reasoning, step by step. #
Solutions: 3
pal /f\\
Al ‘\

g‘ Y
!

3. Given the function h{x) = -4x* - 202" - 9x° + 10627 + 212x + 120:

a.  Determine the a-intercepts of i(x).

b.  Withont computing a table of values for the function, sketch a
graph of h(x), explaining how it accurately portrays all
information gleaned in a. and b. above.

Solutions:
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In the problems below, show each and every step. Expiain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. If you need more space, use the back of this sheet,
1. Given the polynomial function f{x)=x(x- 1) (x-2)* (x+ 1)’ {x + E)
a.  Without multiplying this out and placing it in standard form, determine the degree, leading coefficient and
constant term of f {x).
b. Determine all the zeroes of this function, hence all of the x-intercepts of a graph of this function.
Determine the “shape” of the graph “nearby” each x-intercept.
c.  Without computing & table of values for the function, sketch a graph of £{x), explaining how it accurately
portrays all information gleaned in a. and b. above.
Solutions:
a. We need only add up the multiplicity of each linear factor 10 determine the degree of the polynomial. Thus,
degree(f) = 1+ 1+3+3+4 = 12. That is, if we were to multiply this factored polynomial, then the highest power of x
obtained with non-zero coefficient would be 12. We note that to determine the leading coefficient we need only
determine the product, using multiplicity, of the leading coefficients of all factors. Thus, in this example the leading
coefficient is 1xix1°x1*x1* = 1. Finally, the constant term is the same as the value of the y-intercept, which we
obrain quite simply by substitutinginx=0: f(0)=0(0- (0 - X0+ 1)(0+3)* = 0. that is, this graph passes
through the origin.
b. By the Factor and Remainder Theorems, x = a is a zero of f (x) (i.e., f(a)= 0)if and only if (x - a) is a factor of
f(x). Since we can see all of the factors in the form that f{x) was given, then the zeroes of f(x) are x= 0, 1, 2, -1,
-3, or rearranged in left to right x-axis order, x = -3, -1, 0, 1, 2. The shape of the graph at each a-intercept is
determined by the multiplicity of the factor.
At x = -3, which corresponds to the facior (x + 3), which has multiplicity 4, the graph will not cut through the x-axis,
but instead bounce back in a *“U” shape.
At x = -1, which corresponds to the factor (x + 1), which has multiplicity 3, the oraph will cut through the x-axis, but
it will do it in the shape of the x-intercept of the function x'.
At x = 0, which corresponds to the factor x, which has multiplicity 1, the graph will cut through the r-axis, but it will
do it like an oblique line.
At x = 1, which corresponds to the factor {(x - 1), which has multiplicity 1, the graph will cut through the x-axis, but
it will do it like an oblique line.
At x =2, which corresponds to the factor (x - 2), which has multiplicity 3, the graph will cut through the x-axis, but
it will do it in the shape of the x-intercept of the function x°.

¢. We begin by noting that the leading term, which determines 102+
the behaviour of f (x) at the edges, is just Ix x™, Since the
deeree is even, at both edges the polynomial function has the 768
same behaviour, ie., either it goes up towards infinity at both ——
edges, or it goes downwards towards negative infinity at both S1e T
edges. Since the leading coefficient is positive, the graph goes A1 ——1
upwards at both edges. Thus, we begin by drawing just these ¥ \ S
pieces. v f
Next, we mark all the x-intercepts as points on the x-axis. i E T -
Ordinarily, since it is easy to compuie, we would next ke 1‘1 'l‘
determine the y-intercept by substituting x = 0 into the formula -4
for the polynomial. However, in this example we already know e \.{J
that (0,0) is a point on the graph. That is, the y-intercept is also
an x-intercept, or, the graph passes through the origin. =7
Starting from the left edge we connect to (-3,0), where we
draw the graph “bouncing” back from the x-axis in a parabola =124
like fashion.

Fven the graph initially increases as x-increases just to the right of x = -3, we know that the graph returns 10
intersect the x-axis at x = -1, 50 guessing {your guess, as jong as it is reasonable, will be just as good 45 anyone’s)
how high and where the peak occurs, we draw the graph as changing direction and heading down towards {-1,0).

Because the factor (x + 1) has multiplicity 3, we draw the intersection at x = -1 just like that at x = 0 for the
eraph of -x*. Thus, the graph flattens out as x draws near to x = -1 from the left, crosses at x = -1, and while initially
flat to the right of x = -1, it then becomes steeper in descent.

Somewhere between x = -1 and x = 0 the graph must change direction, i.e., have a vailey bottom, and then rise
back 1o intersect the x-axis at x = 0. How deep and at what value of x you draw the botiom is not of cancern at this
time, we just know that it is there, not where it is precisely.

Because the factor x has multiplicity 1, the graph will cross through (0.0) like an obligue line. Again,
somewhere between ¥ = 0 and x = 1 the graph must change direction because it will intersect the x-axis at both of
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these value. This time the change in direction will be a peak, whose exact location we are unabie to determine at this
time.

Because the factor {x - 1} has multiplicity 1, the graph will cross through (1,0) like an oblique line. Again,
somewhere between x = 1 and x = 2, the graph will have to change direction, this time creating a valley bottom. Just
as before, the shape of this bottom, either the x or y coordinates of such a point, cennot be determined at this time.

We draw the intersection at x = 2, like that of the curve x* at x = 0, and then connect up to our right edge piece.

2. Given the graph of a polynomial function g on the right, deduce a possible f

formula for g. Explain your reasoning, siep by step. e
Solutions: A
First, we note that at both edges (left and right} the graph of the polynomial H /
heads towards -=. Thus, we can deduce that the degree of the polynomial is even AN

{since odd degree polynomials have graphs that at the edges head in opposite N
directions, only even degree polynomials head in the same direction at both
edges. Also, the leading coefficient must be negative, otherwise at both edges the
eraph would head towards =, not -=,

Nexl, we note that the graph has two x-intercepts: x = 0 and x = 4. This
means that the function contains the factors x and (x - 4). Since the graph crosses
through the intercept at x = 0 just like an obligue line, the multiplicity of the factor x is just 1. Since the graph
crosses through the intercept at x = 4 like a cubic, the multiplicity of the factor (x- 4)is 3 (or 5 or 7 etc., but 3 is
simplest so our first choice). Thus, we can think of g(¥) as equal ioa x (x - 4y}, where a is the leading coefficient,
which we already decided must be negative. Note that the degree of this polynomial will be 4, an even number, just
as reasoned it must be above.

If we are to set a value for @, we must find one point on the graph other than the intercepts. The easiest to read
would be vertices on the grid, but regrettably there do not seem to be any. There seem to be a few that we can
approximate fairly accurately, say (#4,20) or (2,15). Suppose we use the second one: (2,15). If we substitute this
information into g(x) = a x (x - 4)> we obtain: 15 = a(2)(2 - 4° = 2a(-2)* = -16a. Looking at this, probably the
y-value on the graph was 16, not 15, so that 16 =-10a2 = a=-1.

What would the other point have yielded? We obtain:

20 = a(¥)(Y - 4)* = 14a(-7/2) = 40 = a(-343/8) = a = -(320/343). While this is not exactly the same as before, it is
similar. We note that the difference is due to our inability to read precise values off this grid, and so this is “as good
as it gets”.

th x“‘_\:‘f'-v'uh..#n ho
|

3. Given the function ii(x) = -4%° - 20x" - 927 + 106x* + 212x + 120:

a. Determine the x-intercepts of ii(x).

b. Without computing a table of values for the function, sketch a graph of h(x), explaining how it accurately

portrays all information gleaned in a, and b. above.

Solutions:
Doing this will require factoring /{(x), but cleverness will spare us too much hard work. If x = (p/q) is a rational root,
with p and ¢ having no factors in common, then p divides evenly into the constant term, 120, and ¢ divides evenly
into the leading coefficient, -4. Using this we can sel up a list of all possible rational roots. To test if & particular
number on the list is a root, we just substitute it into fi(x) and see if we obtain 0 (for a root), or not {if it is not a
Toot).
p=%{1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, g = £{1,2,4}
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Clearly this list is daunting - who wants to go through all of these? The key is, or wiil be, once one root has been
determined, to divide the corresponding factor out, and create a new list that is shorter.
B1y=-4-20-9+106+212+120=0

h-1)=4-20+9+106-212+120+0

B(2)=-128-320-72+424 + 424+ 120 = 0

h(-2)=128-320+ 72+ 424424+ 120=0
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Thus, (x + 2} is a factor, so we do the long division.

~4xt —12x* + 1527 +76x +60
X+ 2)—4x5 = 20x ~9x% + 10637 +212x +120

—43° ~8x*
—~12x% - 0x?
~12x% —24%°

+15x° +106x°
+15x° +30x°
767 +212x
60x +120
60x + 120
0

Let hyfx) = A - 12 + 1525 + 76x + 60. Now we need to delermine zeroes, and factors, of ii,(x). Note that values
of x that were not zeroes for i(x) when we tested before, cannot be zeroes of fi,(x), 50 we need not test them again.
The list of possible rational zeroes is now:

p=2%(12,3,4,56,810,12,15,20,24,30,40,60},g = £{1,2,4)

p_, 1.2 3.4, 3 _+_+1_O,+....+_]£+EQ4.-E.‘.}.+§_+_E+_6,._

q ‘1’"1’“1’"’1’”1’ A R R R T T
b1,2,3,4,5,6,8,10,12,15,20,24,30,9,8
A A R N R S T T T T T T B
il,ii,ii,ii’:,iii_ﬁ_,iﬁ,iﬂiﬁ,iﬁyi?ﬂqi?-_‘_‘.,ii(l,iﬁ?_,iég
AT AT T T T4 T T 4T AT AT 4T 47T 4T 4T 4

fy(-2) = -A4(- 1) - 12(-2P + 15(-2)* + 76(-2) + 60 = -64 + 96 + 60 - 152 + 60 =10

Thus, (x + 2) is again a factor.

2

—4x% ~4x7 +23x+30
X+ 2)—4x4 — 125 +155° + 765 + 60
—-4x* —ga*
—4x* +15x°
—4x% —8x?
+23x7 +76x
+23x7 + 46x
30x+60
30x + 60

0

Let Iy(x) = -43° - 4%° + 23x + 30. Now we need 1o determine zeroes, and factors, of /,{x). Note that values of x that
were not zeroes for A{x) or h,(x) when we tested before, cannot be zeroes of h4(x}, so we need not test them again,
The list of possible rational zeroes is now:
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p=%{12,3,4,5,6,8,10,12,15,20,24,30},¢g = £{1.2,4}
£=+_1.,+3‘+§_+i_+§ .6 ,8,10,12,15,20,24 30
g 11Ty Ty
ii.i—%,ié,ii,ii,ig,iﬁ.iﬂ,ig,ig,igg,i—z—i,ié—q,
22 2 2 2 2 2 2 2 2 2 2 2
c1a2,3,8,5 6,8 10,12 15 20 34,30
4 4 4 4 4 4 4 4 4 4 4 4 4
hy(-2) = -4(-2)" - 4(-2)* + 23(-2) + 30 =32 - 16 - 46 + 30 = 0. Thus, (x + 2} is again a factor.
~4x* + 4x+15
x+2)—4x3 —4x% +23x+30
—4x* - §x°
4x° 4 23x
4x* 4+ 8x
+15x +30
+15x+30
0

Let hy(x)=-4x" + dx+ 15 = ~(dx? - dx - 15) = -(2x + 3H2x - 5)

Thus, h(x) = -4x° - 20x* - 9% + 1062 + 212x + 120 = «(x + 2)*(2x + 3)(2x - 5)

This means that the function had three x-intercepts: x = -2 (with multiplicity 3), -3/2 (multiplicity 1), and 5/2
(multiplicity 1). The multiplicity of each factor tells us how the graph of the function intersects the x-axis, like a
cubic in the case of x = -2, and like an obligue line in the other two cases.

Since the degree of i(x), 3, is odd, at one edge the function heads towards -e, at the other it heads towards «. Since
the leading coefficient of h(x), -4, is negative, at the lefi edge the graph of i(x} heads towards = at the left edge, and
towards - at the right edge.

In the first graph (below left), 10 show the overall shape we have 1o have a large range of y-values. Unfortunately,
this obscures what the graph looks like near the y-intercepts at x = -2 and -3/2. Thus, we draw a separate graph with
a much reduced range of y-values just to illustrate that region (below right}.
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201-NY A-05 Calculus I Warksheet on Reciprocal Functions
Name: Name:
Name: Name:

In the problem below, show each and every step. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. If you need more space, use the back of this sheel.

Below right you are given a graph of a function, f (x).
a. Explain, in sentences in English, each step of the process that you use 10 deduce parts of a graph of the
reciprocal of f (x). Using a numbering system to label each step.
b. Draw a graph of the reciprocal of the function whose graph is given. Label each part of the graph with the
numbers that you used in a. above to explain the derivation of that part.
Solutions: ? it

o

1
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1n the problem below, show each and every step. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students, If you need more space, use the back of this sheet.

Below right you are given a graph of a function, f (x).
a.  Explain, in sentences in English, each step of the process that you use 1o deduce parts of a graph of the
reciprocat of f (x). Using a numbering system to label each step.
b. Draw a graph of the reciprocal of the function whose graph is given. Label each part of the graph with the
numbers that you used in a. above to explain the derivation of that part.
Solutions: : H L
. The steps, in order of use, are {pertaining to the given graph of £ (x)): - mam: :
. examine edge behaviour; :
. locate x-intercepts;
. note peaks and valleys;
. locate vertical asymptotes;
. locate points of intersection of f(x) and its reciprocal;
. connecl the pieces.

onon ot ta — W

Now we carry these steps out, 1
1. Atthe left edge we note that the given graph of /(x) has the line y=8 as 2
horizontal asymptote. The given graph rises up away from the x-axis to get RN
closer and closer to y = § at this left edge. Based on this information, we
deduce that the reciprocal function has a horizomal asymptate at the left edge, y = (1/8), and that the graph will
come down towards the line (and hence the x-axis), as x values increase in size (absolute value) at the left edge.
At the right edge we note that the given graph of f{x) is asymptotic to the x-axis, i.e., ¥y = 0. Based on this
information, we deduce that the reciprocal functicn does not have a horizontal asymptote ot the right edge, but
instead heads upwards towards =,

¥

T v ¥ T

T f I B 1
¥ T R ¥

o g P

]

T T 1 H i

I. edges 2. x-imtercepts = V. A,

2. The graph of f(x) has two x-intercepts: x = -8 and §. Each of these intercepts corresponds (o a vertical
asymptote in a graph of the reciprocal function. Note that nearby x = -§ the given graph of f(x) is above the x-axis,
hence our graph of the reciprocal function will also be above the x-axis.This means that our graph of the reciprocal
function should head upwards towards = on bath sides of the vertical line, x = -8. To the left of but nearby x = 8 we
note that the given graph of f(x) is below the x-axis, hence our graph of the reciprocal function will also be below
the x-axis nearby and to the left of x = 8, so this graph will head down towards -e. To the right of but nearby x = 8
we note that the given graph of f(x) is above the x-axis, hence our graph of the reciprocal function will alsc be
above the x-axis nearby and to the right of x = 8, so this graph will head up towards .

3. The given graph has no peaks, and the only valley is also an x-intercept, x = -8, and so as analysed above, the
reciprocal function has & vertical asymptote at that valae of x,

4. The given graph has two vertical asymptotes, at x = 0 and x = 16. As x gets close to each of these values, f(x)
gets close 10 =, and the given graph is heading away from the x-axis. Thus, a graph of the reciprocal function will
appraach the x-axis, getling closer and closer 10 0, while | f(x)| gets larger and larger. In fact, the reciprocal function
will have missing points, missing x-intercepts, (0,0} and {16,0). For the first of these two, (0,0}, the graph will cut
through the x-axis, missing the actual point of intersection, however, at the second point, (16,0), the graph wiil
“bounce” from the x-axis, like an even powered power function, again missing the actual point of intersection.
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4. V. A, = M.P.(x-intercept) 3. points of intersection

5. We imagine horizontal lines y =-1 and y = 1, and see that such lines intersect the given graph approximately at
(-12,13, (-6,1), (2,~1}, (10,1), and (18,1). Since 1/1 =1 and 1/(-1) = -1, these Tive points are the points where a araph
of the reciprocal function should intersect the given graph of f (x).

6. We draw the praph connecting the pieces.

A
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6. put it all together
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201-NY A-05 Caleulus I Worksheet on Rational Functions
Name: Name:
Name: Name:

In the problem below, show each and every step. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. If you need moare space, use the back of this sheet.

(x+32x+1)°(x=2)
(x+3) x(x=2)°
a. Determine the function fi(x) which is the ratio of ieading terms of the numerator and denominator of f (x).
Reduce it algebraically. Explain how the graph of f (x) will behave at the edges, and how you reasoned this
out.
b. Deiermine all zeroes of p(x), the numeraior of f (x). Determine all zeroes of g(x), the derominator of f (x).
Determine the function g{x) by simplifying f(x) algebraically.
d. Determine all x-intercepts, all missing points, and afl vertical asymptotes of f (x). Show your work step by
step and explaining as you go.
e. Draw a graph of f (x) that illustrates all the information that you have deduced in a. - d. above.
Solutions:

You are given the function, f(x)=

o
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In the problem below, show each and every siep. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. 1f you need more space, use the back of this sheet.

(x+N2x+ 1 (x-2)°
(x+3)7x(x—2)

2. Determine the function A(x) which is the ratio of leading terms of the numerator and denominator of f{x).
Reduce it algebraically. Explain how the graph of f (x) will behave at the edges, and how you reasoned this
out.
Determine all zeroes of p(x), the numerator of f (x). Determine all zeroes of g(x), the denominator of f (x}.
Determine the function a{x) by simplifying f (x) algebraically.

d. Determine all y-intercepts, afl missing points, and all vertical asymptotes of /' (x). Show your work step by

step and explaining as you go.

e. Draw a graph of f (x) that illustrates all the information that you have deduced in &, - d. above.

Solutions:

You are given the function, f(x)=

oo

220t _4xt

(0 x(x) X

We know that for a polynomial function, at the edges the polynomial function and the leading term have similar
values, hence the shape of the graph of the polynomial function at the edges is the same as that of the leading term.
For a rational function, the ratio of the Jeading terms of the numerator and the denominator helps us to predict the
behaviour of the rational function at the edges. In this example, since that ratio is a constant, 4, we inierpret this as
mezning that at the edges a graph of f (x) will look more and more like the constant function, y = 4, i.e., the function
£ (x} has the line y = 4 as horizontal asymptote at both edges.

To determine, independently at each edge, whether a graph of f (x) will approach the horizontal asymptote, y = 4,
from above or from below we can use either of two tactics: a numerical approach; an algebraic approach.

The numeric approach consists of substituting in a sequence of large values of x, to see if values of the function f(x)
are larger than (graph is above asymptote) or smaller than (graph is below asymptote) 4. Suppose we try this for the
left edge. The small table below shows what we have determined.

x -1,000,000 -10,000 -100

a. h(xy=

Jx}y 1 4.000008000 4.000800250 4.082577320
From the table value it seems clear that the graph we draw should approach y = 4 from above at the lefi edge.
The algebraic approach consists of looking at the ratio of not just leading terms, but the two highest power terms in
4x7 - dx _4x(x+]) ;4(”1
¥ +3x x(x+3) x+3
positive values of x we can see that the denominator will be farger than the numerator, hence the fraction in brackets
is less than 1, hence the overal] value of /i* will be less than {graph is below asymptote) 4 at the right edge of the
graph.

both numerator and denominator. In this case we have I’ (x) = J . For large

[ S T T T
T g T {8

b. The numerator of £ (x), (x + 3}(2x + 1)*(x - 2)%, is zero at x = -3, -43, 2.

The denominator of f{(x), {x + 3)°x(x - 2, is zeroat x=-3,0, 2.
¢. ‘The function g(x), obtained by cancelling common factors {rom the + . : ;
(2x +1)° geess e
(x+3)x
d. The zeroes of the numerator that are not zeroes of the denominator are ihe
x-intercepts of f(x). There is only one such zero, x = -15 and since the factor
corresponding to it, (2x + 1), has multiplicity 2, an even number, the graph
should “bounce” back from the x-axis, and the function will not change sign at : o
this x-intercept. : EmEn ) e

The zeroes of the denominator that are not zeroes of the numerator are
vertical asymptotes of £ (x). There is one such zero, x = 0, and since the factor corresponding to it, x, has multiplicity
1, an odd number, the function will change sign across the vertical asymptole, i.¢., on one side of x = 0 the graph of
£ (x) will head towards -=, and on the other it will head towards =.

The other two zerces of the numerator and denominator, x = -3 and 2, are common, s0 we must examine g{x) to
determine the behaviour of £ (x) around these values of x. We note that x = -3 1s a zero of the denominator only of
2(x), hence pg(x) has a veriical asymptote at x = -3. But g(x) and / (x} can differ only at the single points v = -3 and 2,
thus where g(x) has a vertical asymptote, so will f (x). Since the factor causing the vertical asymptote, (x + 3), has

numerator and denominator of f{x}, 15 g(x) =




PAREA Project PA201-014 Final Report: Appendix 6: WebCal Worksheets Page A6 - 23/61
201-NY A-05 Calculus 1 Worksheet on Rational Functions - Solutions

multiplicity 2, an even number, the graphs of g(x)} and f {x) will not change sign across the vertical asymptote, i.e.,
on bath sides of x = -3 the graphs will head down towards -e or they will head up towards «=. We note that

2(2) = 3/2. Since f (x) was undefined at x = 2, we interpret this as meaning that the graph of ' (x) will have a missing
point, (2,5/2).

e. Having placed ail information in a table as it was determined, we now put it all together to draw a graph of f (x):

H.A. V.A. x-int. V.A. M.P. H.A.
mult. 2 mult. 2 muli. 1
X e -3 -3 -3" -4 o ¢ or 2 P
fix) 4 -e0 U -0 0 - oo 2.5 4
o | a | - © il
N | - ~ |

i. Since at the left edge the graph is above the y-axis, and on the interval (-==.-3) there are no x-iniercepls, as the
graph approaches -3 from the lefi, the graph must be heading upwards towards e, not downwards towards -«
because to do that the graph would have 1o cross the x-axis somewhere on (-=,-3).

2. Since there is an even multiplicity for the factor in the denominator that causes the vertical asymplote at x = -3,
s0 the graph does not change sign across the vertical line x = -3. Thus, on the right of x = -3, the graph must head
downwards towards -=.

3. Since the graph is below the x-axis immediately to the right of x = -3, and there are no x-intercepts on the
interval (-3,-%4), the graph will approach the x-intercept at x = -V4 from below. Since there is an even multiplicity for
the factor in the numerator that causes the x-intercept at x = -¥2, the graph will bounce back and stay below the
X-uXis.

4. Since the graph is below the x-axis immediately to the right of x = -14, and there are no x-intercepts on the
interval (-%4,0), the graph will approach the vertical asymptote x = 0 heading downwards towards -es.

3. Since there is an odd multiplicity for the factor in the denominator that causes the vertical asymptote atx =0, so
the graph changes sign across the vertical line x = 0. Thus, on the right of x = 0, the graph must head upwards
towards =,

6. Since there are no x-intercepts on the interval (0,=), the graph will not cross or even touch the x-axis on that
interval, It will pass through the missing point (2,2.5) and somewhere on the interval reach the botiom of a valley,
and then head up towards the horizonta] asymptote, y = 4, at the right edge.

...u] T
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201-NYA-05 Calculus 1 Worksheet on Inverse Functions
Name: Name:
Name: Name:

In the problems below, show each and every step. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. If you need more space, use the back of this sheet. This
worksheet is to be done cooperatively, working in groups of four.

"‘} "
1. Given the function f(x)=m::;—+l:

a. Break this function into a sequence of single operation steps, starting with x on the left and ending with

J2x 4+l
3

on the right, as done in class.

N2x+1

b. Write out the reverse sequence of single operation steps, starting with _LET— on the right and ending

with x on the left, as done in class.

¢.  Write out the reverse sequence of single operation steps, starting with x on the right and ending with
whatever on the left, as done in class.

d.  Write out the formula for £'(x).

2. On the right is the graph of a rational function, f (x). 5
a.  Your first task is to explain, using complete sentences, 4
how to use that graph 1o compute valves of f x). 3
2
1 LT

It}

AP RERP
]
5
-3
3
-5

b. Your second task is 1o explain, using complete sentences,
why we do not generally refer to this graph of f (x) as the graph of f(x).

. Your third task is to draw the usual graph of f"'(x) on the same set of axes thal we see the graph of /' (x) on.
On the lines below write one complete sentence explaining how you do this.
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In the problems befow, show each and every step. Explain, in sentences in English, what you are doing as if you
were writing a solution manual for other students. If you need more space, use the back of this sheet. This
worksheet is 1o be done cooperatively, working in groups of four.

V2x+1

1. Given the function f(x)= 3 :
a. Break this function into a sequence of single operation steps, starting with x on the left and ending with

J2x+1

kil

on the right, as done in class.

Solution:
x2 +1 JO) +3

,"J.
r = 2x - 2x+l o A2x4+1 — —"%—il—
J2x+1

3

b.  Write out the reverse sequence of single operation steps, starting with

on he right and ending

with x on the left, as done in class,
Solution:

+2 -1 ( )* 53

N2x 41
3

X — Ix &~ 2x+1 2x+1

c.  Write out the reverse sequence of single operation steps, starting with x on the right and ending with
whatever on the left, as done in class.
Solution:

+2 -1 (ry x3

-1, . ____9.1'2—1
) ==

— 9x'-1 ¢+ 937 « 3x e x

d. Write out the formula for f~'(x).
Solution:

ox'—~1
5

fx)=
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201-NYA-05 Caleulus T Worksheet on Inverse Functions - Solutions
2. Onthe right is the graph of a rational function, f (x). 3

a.  Your first task is to explain, using complete sentences, 4

how 1o use that graph to compute values of £7(x). 3

Solution: 2
Given the graph of f (x) we vse it to compute values of f (x} as il AT
follows: given a value of x, say 2, we draw a vertical line (x = 2), 0
and then locate the point of intersection of that line with the S4-m-daDphREREP
graph; next, we draw a horizontal line through the point of A1
intersection and locate the intersection of the horizontal line -2
with the y-axis; the y-coordinate on the y-axis of this latter 3
point of intersection is £ (2), which on the adjacent graph |
appears to be about 1.5. We can determine values of f 1x) by 3

reversing this procedure. That is:

given a value of x, say 1.5, we draw a horizontal line (y = 1.5) and then locate the point of intersection of that
line with the graph; next, we draw a vertical through the point of intersection and locate the intersection of
the vertical line with the x-axis; the x-coordinate on the x-axis of this latier point of intersection is f 1(1.5),
which on the adjacent graph appears to be 2. In a nutshell, by thinking of the graph as having independent
variable on the vertical axis (domain values) and dependent variable on the horizontal axis (range values), we
use the general procedure for determining values of a function from its graph.

b. Your second task is to explain, using complete sentences, why we do not generally refer to this graph of
£ (x) as the graph of f'{x).

Solution:
From the discussion above we see that the graph of f (x) can be used as the graph of f 1x), provided we
understand that the domain of f *(x) lies on the vertical axis and its range lies on the horizontal axis, a
complete reversal of standard practice. Thus, if we made this mental adjustment we would have no need to
draw any additional graph for f '(x). The problem is that making that mental adjustment is not so simple,
especially if we want to compare the graph of f (x) to that of f “{x). Thus, we draw a new graph to represent
f7(x) to avoid the confusion associated with an independent variable being vertical while the dependent
variable is horizontal.

. Your third task is to draw the usual graph of £ (x) on the same set of axes that we see the graph of f(x) on.
On the lines below write one complete sentence explaining how you do this.

Solution:
Since the graph of f (x) can actually serve as the graph of f {x), with the roles of the axes reversed, if we want
to see what the graph of f (x) looks like with the roles of the axes not reversed, we need to take the graph of
[ (x) and transform it in such a way that the roles of the axes are reversed, i.e., so that the positive y-axis lies
upon the positive x-axis, and the positive x-axis lies upon the positive y-axis. We notice that if we draw the
graph of the line y = x, the so called “45° line”, and use this line as a mirror to reflect everything, then we
obtain exactly the transformation that we wish, namely we swap y with x and vice versa. Thus, reflecting the
graph of f (x) through the line y = x creates the graph of f (x), with domain now on the horizontal axis and
range on the vertical axis, ie., in the standard way.
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Name: Name:

Name: Name:

This worksheet is to be done cooperatively, working in groups of four.
1. Given the function fy(x) = 2*, and the fact that f;(x) = -(%)2"*"" - 1
1. Write a sequence of functions, f(x), i = 1, 2, 3, and 4, where from one function to the next is a SINGLE
STEP (shift, stretch/compress, or flip).
Sclution:

Sy =
flx) =
Jilx) =
Sy =
b. For each of f,(x), £,(x), £(x), fi(x} and f,(x}, explain in words what transformation of the graph of the

previous function is required to draw a graph of this new function.
Solution:

i) from fy(x):

fi(x) from fi(x):
Jfilx) from fi(x)h:

JFilx) from fi{x):
Solx) from fi{x):

c. Below there are six grids that you will use to illustrate the graphs of fi{x) to fi(x). On your first grid draw a
pair of graphs, f,(x) and f,(x), using different colours and clearly labelling the two graphs. When plotting
f,(x) show accurately the points (-1,5(-1)), (0,/,(0)) and (1,/,(1)). and then just sketch the shape of fi{x).
When plotting f,(x) show accurately the three points corresponding to the above three, and then just sketch
the shape of f,(x). On the next grid, copy your graph of f,(x) and then repeat the procedure above to
generate a sketch of f,{x). On the next grid, copy your graph of fi(x), and then repeat the procedure above
to generate a sketch of fi(x). Continue this process until the fifth grid shows f,(x) and fi(x). (One grid is a
Spare, i ciase you mess up.)

& 4 4

3 4
t 2 2
d 1

H B 2 i 3 -B £ - k M f i 1

4 =1 4]
2 X F
3 = ]
4 éi 4
il A 3
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o +hx+2 r<-1
2.  Given the piecewise defined function, f(x)= bix—a , —1Zx<1,determine ail possible values of
2ax+b+3 l<x

« and b such that this function has no vertical jumps or missing points. Be sure to show your work and explain
in words the iogic that you are using.
Solution:
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1. Given the function f,{x) = 2%, and the fact that fs(r) ()2t
a.  Write a sequence of funcucns Flx),i=1,2,3, and 4, where from one function to the next is a SINGLE
STEP (shifi, stretch/compress, or flip).
Solution:

£) = ffarly= 290
flxy = fi(Yax) = 2860
A = (ta)f) = (a)2eey
flx) = i) = ()27
b.  For each of £,(x), £,(x}, £;(x), £,(x) and f,{x), explain in words what transformation of the graph of the
previous function is required to draw a graph of this new function.

Solution:
Ji(x) from fi{x): adding 1 to x causes the graph to shift horizontally one unit to the left

£(x) from £,{x): multiplying x by % causes the graph to stretch horizontally away from x = -1 by a factor of 2

A(x) from f{x): multiplying v by ¥ causes the graph to compress vertically towards y = 0 (the x-axis) by a factor of

el

Sfitx) from f{x): multiplying y by -1 causes the graph to flip (reflect) verticaliy about the line y = O (the x-axis)

fo{x} from f,(x): adding -1 to y causes the graph to shift vertically one upit downwards

c. Below there are six grids that you will use to illustrate the graphs of fi{x) to fi(x). On your first grid draw a
pair of graphs, f;(x) and f,(x), using different colours and clearly labelling the two graphs. When plotting
Jolx) show accurately the points (-1,fi(- 1)), (0,4(0)) and (1 £,(1}), and then just skeich the shape of fi(x).
When plotting f,(x) show accurately the three points corresponding to the above three, and then just sketch
the shape of f,(x). On the next grid, copy your graph of f,(x} and then repeat the procedure above 10
generate a sketch of f,{x). On the nexs grid, copy vour graph of f,(x), and then repeat the procedure above
1o generate a sketeh of fi(x). Continue this process until the fifth grid shows Jix) and filx). (One gridis a
Spare, in case you mess up.)

4 / 4| / i | 7
7 / / < 1 i
3 3 3 -
! | P
7 / |/ =
Al 1A e . - il
ol BT 17 i ‘:’p ;’,} —
/J '_,,.1-"‘ g / 1| o P — g 1,
ek ] L) k] 1B ) ——
T S R I T T T PR R R
1 =1 gl
2 =) 3
4 =3 4
+ 4 4
k| |
3 3
| -4
—
! '“i
e Ea =
o I o A R
i . A
1 oy TR o T -~ {xX
-
=i
el
™~ - N
3 ) ar <1
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ax* +bx+72 . x<-1
2. Given the piecewise defined function, f(x)= bx—-a , —1<x<1, determine all possibie values of
Jax+Db+3 1<x

@ and b such that this function has no vertical jumps or missing points. Be sure to show your work and explain

in words the logic that you are using.
Solution:

We notice that the given function is piecewise polynomial (the first piece, f(x) = ax® + bx + 2 is a quadratic, the
second piece, f3(x} = bx - a is linear, and the third piece, f{x) = 2ax+ b+ 3 is also linear), hence within each piece
there are no vertical jumps nor missing points. The only values of x at which such “disturbances” can happen are
the “seams” of this graph, namely, x=-l and x = 1.

We note that the function is actuaily defined at both of these seams, Le, f-1)=f£-1)=b(-1}-a=-b-a and
F(1)=£(1)=b(1) - a=b - a, so there are no missing points.

To check if there is a vertical jump at x = -1, we need that f(-1) = f,(-1). Thatis, a(-1F + b(-1y+ 2=b(-1) - a
org-b+2=-h-aor2a=-2ora=-1.

To check if there is a vertical jump at x = 1, we need that £,(1) = f;,(1). Thatis, b{1) - 2 = 2a(1) + b+3or
b-u=2a+b+3or-3a=3ora=-1

Thus, we note that as long as @ = -1, the function f {x) will not have any missing points nor any vertical jumps.
The value of & can be anything since it is eliminated from the equations.



PAREA Project PA201-014 Final Report: Appendix 6: WebCal Worksheets Page A6 - 31/61

201-NY A-05 Calculus | Waorksheet on Absolute Value and Graphical Limits
Name: Name:
Name: Name:

1. Given the polynomial function fi{x) = (x+3)(x+1)}{x-1)" Ha- 3)
a. suppose f,(x) = [(x+3)(x+1){x-1)(x-3)|
. using a colour other than black, sketch those parts of a graph of f,(x) that differ from that of f(x), using
one of the grids below that already shows a graph of fi(x) in black;
ii. in the space below write a definition of f,(x) as a piecewise defined function;
iii. explain in simple sentences how you determined what the graph of f,{x) should look like, and then how
you used this to give the definition of fi(x} as a piecewise defined function.
Solution:

b. suppose fi{x) = (x+3)(e+ (-1 (x-3)
i.  using a colour other than black, sketch those parts of a graph of f,(x) that differ from that of fj{x), using
one of the grids below that already shows a graph of fi{x) in black;
ii. in the space below write a definition of £5(x) as a piecewise defined function;
iii. explain in simple sentences how you determined what the graph of £(x) should lock like, and then how
you used this to give the definition of f,(x) as a piecewise defined function.
Solution:

c. suppose f(x) = [(x+3)|(x+ D(x-1Y)(x-3)]
i. using a colour other than black, sketch those parts of a graph of fy(x) that differ from that of f,(x), using
one of the grids below that already shows a graph of fi(x) in black;
ii. in the space below write a definition of fi{x) as a piecewise defined function;
iti. explain in simple sentences how you determined what the graph of f3(x) should look like, and then how
you used this 10 give the definition of £i(x) as a piecewise defined function.

Solution:
i T | | [ d ! 9 I
! ni 3
] I 1T 5
| ] ] "
H i [N - 18
R  EBAN J HIELY
[TTA - 1 - T i ]
y t i
v A NN
i i
Tt i \\ 1 YL P
¥ i i
i o W k Y v a0 £ 4t ki B M a }
n » i ra V f
{ 1 If
N I I " /
i X
5 s - 5
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12

Given the graph below of the function f (x) determine all requested limits. No explanation is required, but
bonus marks can be earned with good explanations.

a. lir}lmf(x) =

b, lim f(x)=
r——4"

¢ lim flx)y=

. m /0=

e. f-4)=

. lim f(x)=
240"

£ Einﬁl, fx)=

h. liftl)f(.‘c) =

i flO)=

j- lm f{x)=
1—5"

k. linsl fix)=

l. llI‘I} f(x)=

m. f(5)=

n. lim fix)=

Tyt

[~

=

L=p
]
=
]
o
_F
=
M
™~
[
=

10 B -

[y
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201-NYA-05 Calculus I Worksheet on Absolute Value and Graphical Limits - Solutions

1. Given the polynomial function fi{x) = (x+3)(x+1){x-1)"(x-3):

a.

sup)
i
ii.
iii.

pose f,(x) = |(x+3)(x+1)(x-1)*(x-3)|
using a colour other than black, sketch those parts of a graph of f,(x) that differ from that of fi(x), using
one of the grids below that already shows a graph of fy(x) in black;
in the space below write a definition of f,(x) as a piecewise defined function;
explain in simple sentences how you determined what the graph of /,(x) should look like, and then how
you used this to give the definition of f,(x) as a piecewise defined function.

Solution: INEEE
iii. Since f,{x) is just the absolute value of fy(x), we know that wherever f(x} is f d
negative (graph is underneath the x-axis), that the graph of f,(x) will just be Jri--
the reflection of the graph of f,(x) in the mizror of the x-axis. We also use H —
this same idea to create the piecewise definition of f,{x). AT : R
“f(x) . x<-3 REREWAER AnAS
-
. s g L
o fi(x)= S, -3sas-d 2 /
—folx) , -l<x<3 A
flx) Isx ‘ 4
5 i
1 1 ]
b. suppose fi(x}= (x+ 30+ )| (x- 1D (x-3) )
i. using a colour other than black, sketch those parts of a graph of £,(x} that differ from that of f(x), using
one of the grids below that already shows a graph of fy(x) in black;
ii. in the space below write a definition of f,(x) as a piecewise defined function;
iii. explain in simple sentences how you determined what the graph of f,(x) should look like, and then how
you used this to give the definition of fy(x) as a piecewise defined function.
Solution: i i |
iii. The only part of £(x) that has absolute value signs around it is the factor / “
(x-1)". But this factor is squared, hence non-negative already, hence does f \ -
not change sign. when placed inside absolute value signs. Thus, f,(x) = fy{x), H-H '
and their graphs are identical. N
ii. The equation in iii. above indicates that in fact f,(x) need not be piecewise -
defined at all since ali pieces would have the same formula, namely, fy(x). T A A !
" ]
¢ suppose fi(x) = |(x+3) |+ 1) (- 1P (3] "
i, using a colour other than black, sketch those parts of a graph of 4
f(x) that differ from that of f,(x), using one of the grids befow that - Ll
already shows a graph of fi(x} in black; ' L
ii. in the space below write a definition of fy(x) as a piecewise defined function;
iii. explain in simple sentences how you determined what the graph of f,(x) should look like, and then how
you used this to give the definition of fi(x) as a piecewise defined function.
Solution: (TTLIE :
iii. This is the most difficuit problem. First we note that there are two terms A5
enclosed in absolute value signs: the factors (x+3) and (x-3). How do N
l(x+3)] and |(x-3)] differ from {x+3) and (x-3) respectively? We draw in the R Ens -
obligue lines for (x+3) and (x-3), and note that graphs for (x+3)] and |(x-3)| AT -
would be “V's” touching the x-axis at x = -3 and 3 respectively. Thatis, T \-f: e
|(x+3)] differs from (x+3) only to the left of x = -3, and there A
\(x+3)| = -(x+3). Similarly, |(x-3)| differs from (x-3) only to the left of ¥ =3, i /
and there |(x-3)] = -(x-3). Thus, the x-axis is broken into three segments: Ei L
x < -3, where j(x+3)pj(x-3)] = [-(x+3)jx[-(x-3)] = (x+3)%{x-3), L.e., D TRIAMED
change; -3 < x < 3, where J(x+3)|x|(x-3)| = (x+3)x[-(x-3)] = -(x+3)x(x-3), AL
i.e., a change by a factor of -1; and 3 < x, where AL e

|(x+3)x](x-3)| = (x+3)x(x-3), i.e., no change. This shows us that we must reflect the graph of fi(x) about the
x-axis only on the interval [-3,3]. Note that for part of this region the graph of f,(x} is above the x-axis, and so
will be refiected below, and for another part of this region the graph of f(x) is below the x-axis, and so will be
reflected above.

an(x) . ox<—3

i, fﬁ(x)':i-fu(,\'), -3< x<3

folx) . 3<x
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2. Given the graph below of the function f(x) determine all requested limits. No explanation is required, but
bonus marks can be earned with good explanations.

£
L

a.  lim f(x)=17

Sy 8
We see that at the left edge of the graph the function f(x)
values are getting closer and closer to 1, from values that are
above 1.

b, lim f(x)=16
r—iT

o

We see that as x is to the left of -4, and getting closer and
closer to -4, the values of f(x) are petting closer and closer 1o n 4 5

<10 -8 | -b | - 2|8 2 L 3 b 10
about 1.6. . o
c. lm f(x)=8 i A
A—pud S /
We see that as x is to the right of -4, and getting closer and - ]
closer to -4, the values of f(x) are getting closer and closer 1o L6
8.
d. lim f{x)=Uor DNE 8
a—p=d
Since the two half-limits are not of equal value, the whole =it
limit does not exisL
e. f{-4)=8

We see that the vertical line x = -4 intersects the graph at y = 8.
f.  lim f(x)=7
T30
We see that as x is to the left of 0, and getting cioser and closer to 0, the values of f (x) are getting closer and closer
to7.

g lim fx)=-=

We see that as x is to the left of 0, and getting closer and closer to 0, the values of f (x) are heading down towards

-00

h. ]il}gf(x} =Uor DNE

Since the two half-limits are not of equal value, the whole limit does not exist.
i (=7

We see that the vertical line x = 0 intersects the graph aty = 7.
i lirsn_ f(xy=03

We see thal as x is to the left of 5, and getting closer and closer to 5, the values of f{x) are getting closer and closer
to about 0.3,

ko lim f(x)=-33
A5

We see that as x is to the right of 5, and getting closer and closer to 5, the values of f (x} are getting closer and cioser
to about -5.3.

1. lin}f(x) =Uor DNE

Since the two half-limits are not of equal value, the whole limit does not exist,
m. f{5)=Uor DNE

We see that the vertical line x =5 does not intersect the graph.
n lim f{x)=-2

T—em

We see that at the right edge of the graph the function f'(x) values are getting closer and closer to -2, from below -2.
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201-NYA-03 Calculus Waorksheet ont Newton’s Quotient
Name: Name:
Name: Name:

You will be working in groups of four on this worksheet. Put your name in the first position and that of the
other group members elsewhere. All group members must hand in their own copy, but only one will be corrected
and the mark will count for all four people. You are to work with the computer, tlk, and come up with intelligent
answers. From time to time the teacher may intervene to make sure that you are on track.

his material is based on Module 2, Section 6, Rate of Change. This section introduces you to the central
concept of Calculus 1, Instantaneous Rate of Change, a.k.a. (also known as) Instantaneous Velocity, a.k.a. Slope of a
Tangent Line, a.k.a. Derivative, Although we will soon develop quicker and easier methods for computing the
derivative, undersianding the ideas in this lesson are essential to understanding Calculus litself. The ideais to
move back and forth between the worksheet and the computer, where you can develop the understanding required
for answering the worksheet questions.

1. Given a graph of f(x) below (use different colours for a. 10 d. below) :

sketch a secant line connecting (1, £ (1)) to (2, f(2)) and estimate the slope of this line;

sketch a secant line connecting (1, £(1)) to (1.5, £ (1.3)) and estimate the slope of this line;

sketch a secant line connecting (1, £(1)) to (1.25, £(1.25)) and estimate the slope of this line;

sketch the line tangent to f (x) at x = 1 and estimate the slope of this line;

if x represents time and f (x) represents distance moved by a particle travelling in a straight line, then
explain in complete sentences what the slopes determined in a. to d. above represent.

Solution: =6 \ ] 7
y

s enoE

*
L




PAREA Project PA201-014
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In all of the examples below you must show work. Simple answers alone are not enough.

2

Given the function f(x) = 20" + x - 1

ad.

b.

Sf=
@)=

slope of line connecting (1, fF (1IN 10 2, f(2) =

Final Report: Appendix 6: WebCal Worksheets
Worksheet on Newton’s Quotient

=

slope of line connecting (L, f(1)) to (1.1, f(1.1)) =
f.oln =

slope of line connecting (1, F(1)) 10 (L.0L, f(1.01) =

Page AG - 37/61

F(1.001) =

slope of line connecting (1. f{1)} to (1.001, £{1.001)) =
F(1.0001) =
slope of line connecting (1, £(1)) to (1.0001, £(1.0001)) =

slope of the line tangent to f(x} at (1, f (1)} =

Given the function f(x)} = 2x* + x - 1:

=4

SO ) =
Fl+h)

1l

f

H

Fa+h) - f(1)

fa+i -

h

LIRS

M

i-e3) I

does your answer o 3. f. agree with your answer to 2. 1.7 Explain!

determine an equation for the line tangent to f (x) atx = 1:
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4.  Given the function f(x) =28 +x - 1t

a. fe ) =

b. flash) =

C. Fv) =

d. F+h) - f(x) =

. [ - S

' h

: P df . f(x+ft}—f(x)

f. )= e —— e T
fly=ar=in I

g )=

h.  does your answer to 4. g. agree with your answers to 3. f. and 2. 1.7 Explain!

i, determine an equation for the line tangent to f (¥} atx= 1
i o=
k.  determine an equation for the line tangent 1o f(x) at x =1
L. 3=

m. determine an equation for the line tangent to f(x) at x = 3:

n f'i#)=

0. determine an equation for the line tangent to f (v} at x = 4:
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1. Givena graph of f (x) below (use different colours for a. to d. below) :
a. sketch a secant line connecting (1, £(1)) to (2, f(2)) and estimate the slope of this line;

b.  skeich a secant line connecting (1, 7 (1)) to (1.5, £(1.5)) and estimate the slope of this line;
c.  sketch a secant line connecting (1, £ (1)) to (1.25, 7(1.25)) and estimate the slope of this line;
d.  sketch the line tangent to f {x) at x = 1 and estimate the slope of this line;
e.  if x represents time and £ (x) represents distance moved by a particie travelling in a straight line, then
explain in complete seniences what the slopes determined in a. to d. above represent.
Solution: -6\ N i )
We note that vertical grid lines cut horizontal units = N
into 12™ and that horizontal grid lines cut vertical TN
units into 4*. We also note that (1, (1)) = (1, -8), \\;
common to all lines used, lies at a vertex on the grid = N BN
and 50 is an accurate point to use when estimating h =)
slopes of these lines. \\*\
a.  The point {2, (2)) = (2, -10) also lies at a N Y
vertex on the grid so the slope of this secant ° k\h\
line (shown in red on the graph) is: o
~10-(-8) -2 _ T
o1 1 & N ~I
b.  While the poini (1.5, (1.5)) does not seem to \\ \ N
lie at a vertex point on the grid, we notice that s -
the point (13, f (1)) = (13,~9%)onthe |, \:e\f N
green line is a vertex point. Thus, the slope of \\ k =
this secant line is: AN
03 —1 X
ol ) W SO VY 11 -

-1 3 4 5 5
¢, While the point (1.25, f (1.25) does not seem to lie at a veriex point on the grid, we notice that the point
(1%, f(1%2))=(1742,~11) on the blue line is a vertex point. Thus, the slope of this secant line is:

11l =f= — 2
e ) s S WO W U 37, O P
1%2_1 %1 7 7

d.  The grey tangent line seems to pass through many vertices on the grid, in particular
(13>.-10)=(1)%.-10). Thus, the slope of the tangent line is approximately
—10-(— -2
M b= _—. = —2 X E = u6
14~1 A 1
e.  If we think of f as representing the distance moved by a particle travelling in a straight line, and x as

time, then the first three slopes are average velocity over increasingly smaller time periods, while the
fourth slope, that of the tangent line, represents so called instantaneous velocity at the time x = 1.

In all of the examples below you must show work. Simple answers alone are not encugh.
2. Given the function f(x) = 27" + x - 1:

. f(=21+(D-1=2+1-1=2

b. f=22F+(-1=2x4+2-1=9

7 )
c. slope of line connecting (1. f(1)) w0 (2, f(2)) = f("g {(1) = ? N —=7
d. f(l.1}=2(1.1)2+(1.1)« 1 =2x1.21+1.1-1=2.52

fFa.n- () - 252-2
1.1-1 0.1

e.  slope of line connecting (1, (1)) to (1.1, f(1.1)) = =35.2
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f. f{1.01)=2(1.01)" + (1.01) - } =2x1.0201 + 1.01 - 1 = 2.0502

fAOon-Fd _ 2.0502-2
1.01-1 0.01

p.  slope of line connecting (1, /(1)) to (L.OL, f(1.01}) = =3.02

h.  F(1.001) = 2(1.001% + (1.001) - 1 = 2x1.002001 + 1.001 - 1 = 2.005002

F(1.001) = £(1) _ 2.005002 -2

1. slope of line co U 1, (1) to (1.001, F(1.O0D)) = —=5.002
1 j ine conmecting (1, F(1)} to ( S )} 70011 0.001

j. £(1.0001) = 2(1.0001)* + (1.0001) - 1 =2x1.00020001 + 1.0001 - 1 = 2.00050002

k. slope of line connecting
F01.000D) - F(1) _ 2.00050002-2
1.0001-1 0.0001

{1,7(1)) to (1.0001, £(1.0001)} = =5.0002

L. slope of the line tangent to £ (x) at (1, f(1) =5

3,  Given the function f(x) = 27 + x- 1:

a. SO =20 P -1

b. Fll+h) = AL+ + (1) -1 = 2+4h+2F+1+h-1

c. f( = A +{1)-1 = 24 1 -1

d. FU+m-f(H = = M+ 2+ b= Sk 207 = h(5 +2h)

FA+R) = F) K542

e. — et = =5+42h

h i

f. m,, = lim __———u-----f(l +hy - [

=0 h

= liina(S +2)=5+2(0)=3

g, does your answer to 3. f. agree with your answer to 2. 1.7 Fxplain!
Yes. In 2. we used numeric approximation, using values of i = 1, 0.1, 0,01, 0.001 and 0.0001 and then spotted
the pattern, that the slopes of secant lines were slightly larger than 5, but heading closer and closer to 5 as i
got closer and closer to 0. In 3. we used symbols and the limit, but we came to the same conclusion: that is, as
I gets closer to zero, the slope of the secant lines gets closer to 5.

h.  determine an equation for the line tangent to f(x) atx = 1:

Since we know the point of tangency is (1,/ (1)) = (1, 2), and that the slope of the tangent line is i = 5, we use

r—2
the point-slope of the form of the equation of a line to derive: L '1' =5a y—2=5x-1) e y=5x-3
x—
4. Given the function f (x) = 20 + x - 1:
i FO ) = 20 P+( )-1l
b. o) = el + (xHl) - 1 = 27 +dxh+ U +x+h-1
c. flx) = 2AxP+lx}-1 = 2% +x -1

H]
1

d. Fxt) - fx) = +Axh+ 20 +h=hdx+2h+ D
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Flx+)— f(x) _ }{(4I+2h+i)=4x+2h+l
h o
; dar . x - fix ‘
f. fHx) =—L"—"IJmM= Hm{4x+2h+D=4x+2(Q)+1=4x+1]
dx h—=0 h h—=0
g fh=4l)+1=5

h.  does your answer to 4. g. agree with your answers to 3. f. and 2. 1.7 Explain!

Yes, all of these answers agree. They are all variations on the same theme - if we choose secant lines that all
pass through the same fixed point, and move the second point of contact closer and closer to that point, the
secant line will become more and more like 2 tangent line. This last method has the great advantage that to
compule the vahte of the slope of the tangent line at any vahie of x, once we have finished step [., we need only
substitute in the appropriate value of x.

1. determine an equation for the line tangent to f (x) atx = 1:

Note that this is the same question as 3. h. above, and hence has the same answer. Since we know the point of
tangency is (1, f (1)) = (1, 2), and that the slope of the tangent line is m = 5, we use the point-slope of the form

1o ’J
of the equation of a line to derive: 2 ‘1'
=

=5 y-2=5x-1)= y=5x~-3

i S@=4241=9
k.  determine an equation for the line tangent o f{x) atx = 2:

Note that this is the same question as 4. i. above, except at a different value, and hence has a similar answer.
Since we know the point of tangency is (2, f (2)) = (2, 9}, and that the slope of the tangent line is m = 9, we use

the point-slope of the form of the equation of a line to derive: 2 2 =0 y-9=0(r-2Y = y=0x-9
x-2

L fi(3)=43)+1=13
m. determine an equation for the line tangent to f(x) at x = 3:

Note that this is the same question as 4. i. above, except at a different value, and hence has a similar answer.
Since we know the point of tangency is (3, (3)) = (3, 9), and that the slope of the tangent line is m = 9, we use
the point-slope of the form of the equation of a line to derive:

y—20

x-3

=13 y-20=13(x-3) = y=13x~19

n  fl4r=44y+1=17
0. delermine an equation for the line tangent to f(x) at x = 4:

Note that this is the same question as 4. i. above, except at a different value, and hence has a similar answer.
Since we know the point of tangency is (4, f (4)) = (4, 33), and that the slope of the tangent line ism = 17, we
use the point-slope of the form of the equation of a line to derive:

yv—=135

x—4

=17 & y-35=17(x—4) e y=17x-33
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201-NYA-05 Calculus I Worksheet on The Derivative as a Function
Name: Name:
Name: Name:

You will be working in groups of four on this worksheet. Put your name in the first position and that of the
other group members elsewhere. All group members must hand in their own copy, but only one will be corrected
and the mark will count for all four people. You are to work with the computer, talk, and come up with intelligent
answers. From time to time the teacher may intervene to make sure that you are on track.

This material is based on Module 2, Section 7, The Derivative as a Function. Note that this section:
introduces a few new words (derivative, differantiable, and differentiability); introduces some new notations (

d . - .
F. —di D, f(x) ); helps you 10 practice computing F'(x) using the definition {Newton's Quotient); and,
AY
discusses the relationship between differentiability and continuity. This worksheet will test your understanding of
these. The idea is to move back and forth between the worksheet and the computer, where you can develop the

understanding required for answering the worksheet questions.

df

1. The derivative of a given function f {x), be it written as f’(x) or -, is a new function, related to the original.

.. . dx
a. If x(r) represents position at time ¢, then x (1) = ? represents
1

df

b.  If we are looking at the graph of £ {x}, then /'(x) = ~d— represents
x

and this explains why f’(x) equals a constant value if and only if

2

By definition a function f (x} is differentiable at x = a if and only if the derivative of f(x) exists at x =a.
Looking at the graph of the function we say that it is differentiable at the point (a, f (a)) if it is “smooth™ there
or that the graph does not have a ““sharp” point there. In the previous lesson we saw that smooth meant that if
we zoomed in, then the graph eventually looks like a straight line. What does the existence of f'(a) haveto
do with zooming in creating a straight iine? Explain in your own words.

3. Given the function f(x) =
Ix+l
a.  On the back of this sheet go through all steps, as laid out in the lesson and examples, of computing
() using Newton's Quotient.
b.  Will f'(x)exist for all values of x? Explain why your answer was prediciable before f'(x) was known.

. On the back of this sheet show how you determine the y coordinate of the point on the graph of f(x) at
x = -1 and the slope of the tangent line to f{x) at this point. Use your answers to compute the equation
of the tangent line to f(x) atx=-1.
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4, Claim: Every differentiable function is continuous, but not every continuous function is differentiable. TFor
two different functions that are continuous but not differentiable, not taken from the examples or the lesson,
sketch praphs of such functions and explain.

: "

i 1]

N

'l J

N h

i 2

L b

i i

4 . e} e 4 . L ¥ +3

~H = =K i3 4 C 9 R =¥ = =ik [ ;

=i =%

N b

Lot Tk

L N

E r rl

=i} e )
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Lh

In the branch of mathematics.called logic we refer to a statement of the form “if A then B” as an “if-then™
statement. For any such staternent there are three related ones: the converse (“if B then A™); the inverse (“if
not-A then not-B™); and the “contrapositive’ (*if not-B then not-A”).
For the if-then statement, “if a function is differentiable, then it is continuous™ we have seen that the converse
statement, “if a function is continuous, then it is differentiable” is not true (you have just shown two examples in 3.
above). However, the contrapositive statement “if a function is not continuous, then it is not differentiable” is
equivalent to the original statement, and hence true.
For each of the three types of discontinuities (removable, a.k.a. misplaced point, jump a.k.z. vertical jump,
infinite a.k.a. vertical asymptote) carry out the following steps:
a.  sketch a function with such a discontinuity, as well as three secant lines approaching the point of
discontinuity;
b.  explain why the function is not differentiable at the point of discontinuity with reference to your sketch.

T ] H 3 ] 3 ! il I T
v T :
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df

1. The derivative of & given function f{x), be it written as f '{x) or g is a new function, related to the original.
X
. . . dx . . .
a. If x(r) represents position at time r, then x '(r) = ? represents: instantaneous velocity at time 7
f

b. If we are looking at the graph of f(x), then f'(x) = gf: represents: the slope of a tangent line

and this explains why f'(x) equals a constant value if and only if: f (x) is linear, i.¢., has constant slope

12

By definition a function f (x) is differentiable at x = a if and only if the derivative of f (x} exists at x = a2,
Looking at the graph of the function we say that it is differentiable at the point (a, f (@}) if it is “smooth” there or
that the graph does not have a “sharp” point there. In the previous lesson we saw that smooth meant that if we
zoomed in, then the graph eventually looks like a straight line. What does the existence of f’(a) have to do
with zooming in creating a straight line? Explain in your own words.

Solution:

The derivative, f '(a), exists if the limit of secant line slopes exists, i.e., if we can establish a pattern in a
sequence of secant line slopes, and we call that pattern or eventual value the slope of the tangent line. A curve
appears to be smooth if we can zoom in and eventually the curve appears to become a straight line, the
tangent line. The curve is not smooth if there is a “sudden change in direction™ or a “‘sharp point” that
remains when we zoom in. Finding an “eventual value” requires us to choose ever smalier values of “It”,
which is the same as zooming in, so that the eventual value is the slope of the straight line that a smooth curve
eventually “becomes”.

3. In this section it is asserted that every differentiable function is continuous, but not every continuous function is
differentiable. Sketch the graphs and provide an accompanying explanation for two different functions that are
continuous but not differentiable.

Solution:

Three relatively simple functions that are continuous (everywhere), but not differentiable {everywhere) are

Sy =|x|gx)y= x™, and hi(x) = x* From graphs of these functions, shown on the side, we see that graphs of

these functions can easily be drawn without lifting the pencil at all. However, the first two graphs have a

sharp point, i.e., one that is not smeoth, at x = 0, That is, if we zoomed in on these graphs so as to look only at

values of x that are ever more close to x = 0, the graph never looks like a non-vertical line of a fixed slope.

The third graph has a vertical tangent line at x = 0, hence has “infinite slope” there, and so does not actually

have a derivative there.

\ it i
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4. In the branch of mathematics called logic we refer to a statement of the form “if A then B” as an “if-then”
statement. For any such statement there are three related ones: the converse (“if B then A"); the inverse (“if

not-A then not-B™); and the “contrapositive” (“if not-B then not-A™). For the if-then statement, “if a function is
differentiable, then it is continuous” we have seen that the converse statement, “if a function is continuous, then

it is differentiable™ is not true {you have just shown two examples in 3. above). However, the contrapositive
statement “if a function is not continuous, then it is not differentiable” is equivalent to the original statement,
and hence true. For each of the three types of discontinuities (removable (misplaced point), jump {vertical

jump), infinite {vertical asymptote) carry out the following steps:

a. sketch a function with such a discontinuity, as well as three secant lines approaching the point of

discontinuity;

b. explain why the function is net differentiable at the point of discontinuity with reference to your skeich.

Solutions:

Removable Discontinuity

In the praph of f (x) sketched at the right we note that thereis a
removable discontinuity at x = 0. In this example, when we connect a
point on the graph with a value of x close to 0, to the point

(0, f (0)) = (0, 2), we clearly see that the secant line thus drawn has a
slope that is positive or negative, depending upon which side of x = 0
the point lies. Further, as we draw many such secant lines, with the
second point drawing closer and closer to x = 8, we note that the
absolute value of the slope grows larger and larger without bound,
hence approaching = as the x-coordinate of the second point
approaches x = 0. Thus, this function is not differentiable at the point
of discontinuity since it kas no tangent line, hence no slope of a tangent
line, atx = (.

Jump Discontinuity

In the graph of f (x) skeiched at the right we note that there is a jump
discontinuity at x = 0. In this example, when we connect a point on the
graph with a value of x close to 0, to the point (0, £ (0)) = (0, 0), we
clearly see that the secant line thus drawn has a slope that is positive.
As we draw many such secant lines, with the second point drawing
closer and cleser to x = (}, we note that the value of the slope grows
larger and larger without bound, hence approaching = as the
x-coordinate of the second point approaches x = (. Thus, this function
is not differentiable at the point of discontinuity since it has no tangent
line, hence no siope of a tangent line, atx = 0.

Infinite Discontinuity
In the graph of f (x) sketched at the right we note that there is an

infinite discontinuity at x = 0. Usually at an infinite discontinuity there

is no point. When there is no point, there can be no tangent line (no
point of tangency), hence no slope of the tangent line, hence no
derivative. However, suppose there was a point, as shown on the
graph, (0,0). We note that depending upon which side we draw

successive secant lines from, the slopes of the secant lines appear to be ~

approaching either -= or +w. Thus, there is no tangent line, and no
slope of a tangent line, hence no derivative, at the point of
discontinuity.

u

flx)

S

A
-———
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201-NYA-05 Calculus I Worksheet on Derivative Rules
Name: Name:
Name: Name:

You will be working in pairs on this worksheet. Put your name in the first position and that of your partner in
the other position. Both pair members must hand in their own copy, but only one will be corrected and the mark
will count for both people. You are to work with the computer, talk, and come up with intelligent answers. From
time to time the teacher may intervene to make sure that you are on track.

This material is based on Module 3, Section 1, Rules of Differentiation as well as Section 2, Implicit and
Logarithmic Differentiation. The idea is to move back and forth between the worksheet and the computer, where
you can develop the understanding required for answering the worksheet questions.

1. The theory of relativity predicts that an object whose mass is mn, when it is at rest will appear heavier when
moving at speeds near the speed of light, c. When the object is moving at speed v, its mass n: is given by:
m
me= L
1"2
1=

a.  Determine %21- . (If you wish to use the Derivative Calculator - Module 3, Section 1, Page VIII, bottom
W

- to check your answer then you muss make m a function of x instead of v, or use the variable button to
choose v as your variable).

b.  Interms of Physics, what does %’1’- tell you?
¥

Solution:
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2. A particle is moving along the x-axis, where x is in centimetres. Its velocity, v, in cm/sec, when it 15 ai the
point with coordinate x is given by: v =27 + 3x - 2. Determine the acceleration of the particle when it is at the
point x = 2, Give units in your answer.

Solunon:
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201-NYA-05 Calculus I Worksheet on Derivative Rules

3. Afunction f(x) is said to have a zero of multiplicicym at x = a if:
JFix)=(x-a)" hi{x), with fi{a) = O
Explain why a function having a zero of multiplicity m at x = a satisfies the following equation:
p "
f“’)(ﬁ)=....d ,;j_{ g-‘) =0,forp=12,....m—1

Sotution:
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4.  The equation x* + xy + y* = 7 defines a curve.
a.  Determine the two points where this curve crosses the x-axis and show that the tangent lines to the curve
at these points are paraflel. What is the common slope of these tangent lines?
b.  Determine points on this curve where the tangent is parallel to the x-axis.

dy

¢.  Determine points on this curve where the tangent is parallel to the y-axis. {Note that in this case *d;: is

undefined, but -jiis. What value does ;ﬂ have at these points?)
‘v .‘P

Solution:
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1. The theory of relativity predicts that an object whose mass is s, when it is at rest will appear heavier when
moving at speeds near the speed of light, c. When the object is moving at speed v, its mass m is given by:

dm

m
m = 2

a. Determine - (If you wish to use the Derivative Calculator - Module 3, Section 1, Page VI, bottom

v

- 10 check your answer then you must make m a function of x instead of v, or use the variable button to
choose v as your variable).

b.  Interms of Physics, what does dm tell you?

y

Solution:
.
" e Y]
- 1] _ _y . . ‘
"E o m“[l c:J Use Algebra to rewrite function to make Calculus easier.
I-—
p
R 2
4 dm“(]—wi»] d(]_m:_]
a:: : d =, Multiplication by a Constant Rule
v i
I’1 -h{ W
(2] 44
= : Chain Rule

1}
o | =
W=
—
) L

Power and Difference Rules

Power Rule

Algebra o simplify

Higbe

Vet w? )3 (\Icz —? )J

Algebra 10 simplify

Constant and Multiplication by a Constant Rule

i

. . dm . T .
The first thing we notice is that - is positive, indicating that as v increases, so does m. 1f we take a closer

dm . . C
lock we can also see that —— increases as v approaches ¢ from the left (can you explain why such a limit is

dy

only from the left?). We deduce this from the fact that the denominator decreases towards 0 as v approaches
¢, which tends 1o make the fraction larger. At the same time the numerator increases, which also tends to
make the fraction larper. Thus, as you near the speed of light, your mass is increasing faster and faster.
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2. A particle is moving along the x-axis, where x is in centimetres. lts velocity, v, in cmi/sec, when it is at the
point with coordinate x is given by: v= # 4 3x- 2. Determine the acceleration of the particle when it is at the
point x = 2. Give units in your answer.

Solution:
- . dx . . dv
We are given that = v=x"+3x—2 and we are asked lo compute -
4 3=2
We note that according to the Chain Rule, av =ﬂxg'£ .
di dx di
, d{x*+3x-2 2 43 d? <
But v is a polynomial function of x, so El-=—(—~~~-w--2——)={—fJ’——r-‘-f-'—)i—fl—'l= 2x+ 3d—\-—0 =Jx+3.
dx dx dx dx  dx elx
. . dv dv dx 2
Thus, according to the Chain Rule, — = —-x—={2x + 3} X (x‘ +3x- 2) and
di dx dt
v =|:(2.1‘-:-3)>‘. (v +3x- z)] =(2@)+ 3 ((2)' +3(2)-2)=7x8=36
dt|, ., a2

This would be measured in cm/(sec)”.

3. A function f (x) is said to have a zero of nultiplicity matx = a if:
Fx) = {x- ay” hix}, with i{a) = 0
Explain why a function having a zero of multiplicity matx=a satisfies the following eguation:
d"f(x)
o - = - -
f (a)_“———dx” 0, forp=12,..,m-1
Solution:
One way to begin is 1o try calculating, as much as we can, the sequence of derivatives,
FU0f 0, F (), o [ V(x). Since we do not actually know the function h{x), the best we will be able to do is

have answers that include i'(x), 17 (x), B (x), ... B 0(x).

Flx) =(-a)" hix)
Fa) = [{x- a)"h(0)] =[x - @)™ h(x)+(x - @)l (x) = m(x - a)" D A(x)+(x - @)l (x)
= (x - a)™ [mhix)+(x - a)'(x)]
Frey =[x - a)™ Y [mh(x)+Hx - a)f' () (x - 2" [mh(x)+(x - ayh'(z)]'
= (- D(x - )™ Y DY [mh(x)+(x - a)ft (x)]+x - a)y™ [mh' G+ {(x - a)' I (x)+{x - @it (x)]]
=(m - 1}x - a)™ [mh(x)+(x - )b’ (x)]+(x - a)™ [t GO+ (DI {2+ (x - a)h " (x)]
= {x - @)~ D[mh(x)+x - adh (x)3+(x - @)l (1 (x)+(x - aYi"(x)]}
= (x - @)™ G - Danh(x)+(m - D(x - e’ (x+m (- a)ht' (x-(x - aph' (x)+(x - alPht(x))
= (x - @)™ (m - Dimh(e)+{(n = D+t 1(x - @)l (x)+{x - arh'(x))
= (x - @)™ [(m - Dmd(x)+2m(x - el (x)+(x - alPh ()]

While there are many interesting patterns that we might observe here, we will focus on the most obvious ones.

The patterns that we observe are that: (1) from the first derivative we can factor out (x - @)™, from the second
derivative we can factor out {x - @)™, so we deduce that from the p“‘ derivative we can factor out (x - @)™"; (2) when
we factor out (x - )™ from the firss derivative what is left is a constant times /{x) plus a constant times {x - @) imes
fi'{x), when we factor out (x - )™ from the second derivative, what is left is a constant times h(x) plus a constant
times (x - @} times h'(x), plus 4 constant times (x - a)* times " (x), so we deduce that when we factor out (¥ - a)™*
from the p"' derivative, what is feft is a constant times fi(x) plus a constant times (x - @) times /1'{x), plus a consiant
times (x - a)° times h"(x), etc., until a constant times (x - ) times I'"(x). Thus, we obtain:

FAx) = (x - a)" ez e, (x - @l (x)de,(x - a)h” (X)...4C, (X - a)"hi'P)(x)], where the ¢, are the constant coefficients,
none of which is 0.

(With some effort we could discern patterns for each of the constant coefficients - I leave this to you lo investigate,
but it is not necessary for the purpose of solving the current problem.]

Thus, as long as m-p > 0, f¥%a) = 0. We note that f"(a) = ¢ f(a)+0 = O (given).
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4. The equation x* + xy + ¥ = 7 defines a curve.
a.  Determine the two points where this curve crosses the x-axis and show that the tangent lines to the curve
at these poimts are parallel. What is the common slope of these tangent lines?
b.  Determine points on this curve where the tangent is paralle] to the x-axis.

. . . . . L dy .
¢.  Determine points on this curve where the tangent is parallel to the y-axis. (Note that in this case E] is
x

dx dx .
undefined, but d—‘ is. What value does -&}- have at these points?)
A ¥

Solution:
a.  All points on the x-axis satisfy the the equation y = 0. Thus, to determine where the curve X + xv + v = 7

intersects the x-axis we substitute in 0 for ¥ and then solve the resulting equation for x:

A0+ (0P =7 = =T = x=x7
Now, to determine the slopes of the tangent lines at these poims, (—\/7.0). (ﬁo) , we must first use implicit

differentiation to determine 22 ;

dx
. | d{x*+xy+3° - v . , 2 ,
XUyt yT =7w——(————)=ﬂg.‘iﬁ_+iﬂ:}.+i§m=g@ x4 i‘_ v4x _‘_"_‘_ +£’_-}_><ﬂ_20
dx dx dy dx dx dx _dx dy  dx
Y » ' t t T Ty '
= 2x+|(Dy+x fi-}— +23rx—fi—2—=01:2x+ v-i-.tﬂ—-%mril:()@ (x+.’2v)-[-1-‘}-=—(2x+y) mj'_’_.‘__=_~-‘+}
dx dx . dx Todx T dx dx 42y
Now, substituting in the coordinates of each of the x-intercept points:
dy| 2N ay 2(\7)+ (@ _,
deleof - (T)r20) Tdvlef o (V7)420)

Since the slope {derivative) is the same at both points, we know that the two tangent lines are parallel.
The slope, as seen above, is 2, for both tangent lines.

b. A line that is parallel to the x-axis has a slope of 0. Thus, the derivative formula that we computed above
should be set equal to 0, and vusing the information gleaned from that, we return to the original equation and
attempt to solve for all possible values of x & y:

dy 2x+y

— == =0 2x+y=0s y=-2r=1 +x(-20)+ (-2 =T’ =T= ¥ =1<:a.\'=i\[j,y=—r""2\ji
dx x+2y . 3 3 3

Note that the denominator of c;—‘ is not zero at either of these two points, so the derivative is really 0 there.
X

That is, the tangent line to this curve is parallel to the x-axis at the points: L—\/%ZEJ[\E—E\/%J

C. Approach 1: A line that is parallel to the y-axis has an undefined (infinite) slope. Thus, if a tangent line
were vertical (i.e., parallel to the y-axis), then the derivative would be undefined. This would probably mean
thart the derivative has a denominator that is O (and a numerator that is not Q).

)

' Iy ’ - —_
Yo 2Y e ar 2y =0 =2y = (200 4+ (20y Y mT e Ay =T ey e .v=i\jz-\'=+2\ﬁ
dx x+2y n 3 3 3

dy . . . . . .
Note that the numerator of “a'._‘ is not zero at either of these points, so at these points the slope is undefined as
X

predicted, which should mean that the tangent lines are parallel to the y-axis.

. . .. . dx . \
Approach 2: If we think of the equation defining x as a function of y, then - represents the “slope”,
y

run . . . . . .
now measured as ~—- , of a line tangent to this function. In this context, what we normally think of as

rise
vertical lines, f.e., lines parallel to the y-axis, whose equation is of the form x = ¢ where ¢ is some constant,
actuaily have a “slope” of 0. We could differentiate the equation with respect to ¥ this time and determine a

. . dx . . . .
formula for ~——, but there is an easier way that also iliustrates a general theorem, so we shall do that instead.
o ¥ &
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dx dx_dy 1 dx
= e S8 e 3, i T e T
de dy dx dy dy
dx

Thus, using our previous compuiations we obtain:
dy 2x+y dx 1 1 _ x+2y
X

S =T el = =
de  x+2y dy [(dYy _2x+y 2x+y
dx x+3y

Thus, having slope of 0, would be the same as asking for (x+2y) =0, which from above we krow led to the




PAREA Project PA201-014 Final Report: Appendix 6; WebCal Worksheets Page A6 - 55/6]

201-NYA-05 Calculus 1 ‘Worksheet on Chain Rule & Composition
Name: Name:
Name: Name:

In the problems below, show each and every step. Explain, in sentences in English, what you are doing as if you

were writing a solution manual for other students. If you need more space, use the back of the sheet.

1. Atable of values of f, g, f " and g' is given below on the right:
a. i h(x) = f (g(x)), determine 1'(1);

b, ifj(x) = g(f (). determine j'(1); il CACR 0 YISOl L)

c. if k(x) = fF(F{x)}, determine £'(1); 1 3 2 4 6

d. ifl{x) = glglx)), determine ['(1).
Solutions: 2 I3 8 5 7

3 7 2 7 9

2. If g and h are the functions whose graphs are shown on the right, let

u(x) = h{g(x)), v(x) = g(h(x})), and wix) = g{g(x)). Determine each of the

derivatives indicated below, if it exists. If it does not exist, explain why it \ B

does not exist. —

a.  w'(l) b. v'{I) c. wi{l) - -
Solutions:

\ \ /g/
o/
o

3. [Iffis the function whose graph is shown on the right, fet i(x) = f( f(x)) and

2(x) =f(x"). Use the graph of fto estimate the value of each of the /

derivatives indicated below.

a. h() b. (2 VXD /
Solutions: e

™~




PAREA Project PA201-014 Final Report: Appendix 6: WebCal Worksheets

Page A6 - 56/61

201-NYA-05 Calcutus I~ Worksheet on Chain Rule & Composition - Solutions
1. A table of values of f, g.f " and g' is given below on the right:
a. if h(x) = F(g{x)), determine h'(1}; ! NN DU
b, ifj(x) = g( £ (x)), determine j' (1); x | el S e'x)
c. ifk(x) =f(f(x)}, determine k'(1); 1 3 ) 4 6
d. if §x) = g{g(x)), determine {'{1}.
Solutions: 2 1 8 5 7
oo dR(x) _df(g(x)) _df(elx) dglx)
Kx)y= = = » -
He dx dx dg(x) dx 3 ! - ! 2
a.
. dfle(x X , , ‘
(1) = feGn  deto) = gDy g(l) = f(2)x6=5%x6=30
do |, ds |
= 440 48U @) _ds() 4]0
b dx dx df (x) dx
B d d ' . '
jay = A8UN IO piay iy = pyxa=9%4 =36
df( ) L =] dx lx 1
F(x) = di(x) _dfifixn _ df(f(-‘-’))xdf(l‘)
’ dx dx df () dx
c.
oo d U] _d Sl , , ,
EF= X = (fap= fi)=f3)x4=Tx4=28
df(I) x=1 dx =]
Py = dix) _ dp(g(x)) _ dg{glx)) y d g{x)}
d dx dx dg(x) dx
ry = LEEE AN g ) = @) x6=Tx6=42
dg(x) L=1 dx Lzl
2. If g and h are the functions whose graphs are shown on the right, let
u(x) = (g (x)), wx) = glh(x)), and w(x) = g{g(x)). Determine each of the
derivatives indicated below, if it exists. If it does not exist, explain why it \ i
does not exist. —
a. u'(l) b. (1) c. w'(l) - ~
Solutions:
Before we begin, we note from the graphs of g and / that they are both \
piecewise-linear functions. Thus, on each piece the derivative is simply the ot /g
slope of that line segment. However, at each of the “seams”, where the lines " / e
meet, these are “sharp™ points at which there is no derivative (no tangent line, o
hence no tangent line slopes).
a.
W(x) = du(x) _dhig(x)) _dilg(x) dg(x)
dx dx de(x) dx
, dig(x)| _de(x)] , ’ . -6\ (-1 3
= 4 =h{pv r =3 —_— | = — -3 =
) dg(x} my dr | Hel)xg I()XQZ 4 =3 4
Vix) = dv(x) _dgli(x)) _delh(x) d h(x)
b dx dx dh(x) dx
L dghy| | dh)| . , oo (&
(1) = = g (AN =g (x| = |=Ux2=U
vil) 2 () L:lx I |, g () Ii(ly =g ()% ?-J %
That is, v (1} does not exist, because g has a sharp point at 2{1) = 2.
Wix) = dw(x) _dglg(x)) _dglg(x)) dglx)
dx dx dg{x) dx
c.

delg0)] | 4509
dg(l‘) |.t=] dx L:]

w2

w(l) =

}(3)

! 3 i ’ ’_6
=g(gnxgli=g (3)xLT] (
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3. 1ffis the function whose graph is shown on the right, let fi(x) = £ ( f(¥)) and
2{x) = f{x*). Use the graph of f o estimate the value of each of the /
derivatives indicated below.
a. h'(2) b, g'(2) vE/(x) /
Solutions: I /
R(x) = dh(x) _dffG) _dreemn de(-\')
dx dx df {x) dx /
P F A0 46))) NN B (€] ,
W)= = 2 2
a. Il () mx o | FUEnxfi@ -

sf'(l)x(l%}(—nx["—z -2
3 3) 3

Note:  The derivatives, £ '(2) and f’(1), are estimated by placing a transparent plastic ruler in the position of
tangent line at (2,7 (2)) and then at (1, £(1)) and computing the slope. Thus, the tangent at (2, £ (2))
appears to pass through (-1,3) and (5,-1), so the “rise” = (-1 - 3) = -4, "run" = (5 - (-1)) = 0, 50
£'(2) = -(4H6) = -%5. Similarly, the tangent at (1, (1)) appears to pass through (2,1} and (3,0), 50 the
“rise”=(0-1)=-1,"run”" ={3-2)=1,s0f'(1) = -(1/]) = -1.

g = detx) _dftr)_ df(f-)x———dx- =———-——df(',t‘) *{2x)

b dx dx dx” dx dx”

‘ ! d '-1 Fomd :
g=TLE0 ), = r@sexn =4y c4)s4(§)slo

Note:  The derivative f'(4) is estimated by placing a transparent plastic ruler in the position of tangent line at
(4, £(4)) and computing the slope. Thus, the tangent at (4, f (4)) appears to pass through (3,0} and (5.5), so
the “rise” =(5- 0 =5,"run" = {5-3)=2,s0f'(2) = 5/2.
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201-NYA-05 Calculus I Worksheet on Newion's Method
Name: Name:
Name: Name:

As always, you must show your work and explain your reasoning. Failure to do so means few, if any, marks will be
given.

1. a. Each of you should construct your own individualized fifth degree polynomial based on your student
number according to the following scheme:

i.  Suppose your student number is 0234567,

ii. We discard the leading 0, separate the remaining six digits, and alternate their signs: 2, -3, 4, -5, 6, -7.

iii. We use the list of digits as coefficients to constract our polynomial: f(x) = 27 - 3t 4y - S+ B - T
Solution:

b. Use either a graphing calculator, a LiveMath insert, or some other computer software 10 generate graphs
{print and attach the graphs to your assignment). At least one graph must show the overall shape of your
polynomial function, as well as the number of roots. Another graph must zoom in on a specific root (your
choice if there is more than one), so that we can see the x-location of the root to 2 decimal place accuracy
(that is, we can read tick marks on the x-axis that trap the root in an interval of length 0.001).

Solution: (Attach sheets}

¢. Use a graphing calculator, a LiveMath insert, or some other compuiter software to generate three searches
for the same oot that you zoomed in on in 2. above using the three methods in Section 5 of Module 4,
Bisection, False Position and Newton’s Method. Use sheets posted in the Materials section for recording
your searches. Start Bisection and False Position using your interval end points from your best graph in 2.
Start Newton's Method with the midpoint of that same interval. Continue each search until one of the
following conditions is true:

lerror |< 10®*  or |f(e)|<10*  or the sheetis full
Solutions: (Attach sheets)

Bonus Question
d. With your starting interval, using Jogic and algebra, determine the smallest possible number of steps
(iterations) required in the Bisection Method to have an accuracy such that | error [ < 0.5 x 107
Solution:
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Tteration

X T(x)

+ -

jerror|
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TFunction Cut-off Value:

Decimal Accuracy:
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Tteration

f(x)

+-

jerror]|

a

i

(%]
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Function: Decimal Accuracy:

Function Cut-off Value:

Tteration x f(x) +i- Jerroz]|

a

(R

I6

17

18

19






