STANDING WAVES: A PHASE DIFFERENCE APPROACH

ABSTRACT

A treatment of standing waves in one dimensional
systems is presented based on an analysis of the
phase difference between the direct wave and the
reflected wave. The analysis leads to all the proper-
ties of the standing waves, in particular, the inter-
nodal distance, normal modes of vibration, the am-
plitude of the resultant wave as a function of posi-
tion, and the role of multiple reflections from the
boundaries of the medium.

§ 1. INTRODUCTION

Standing waves are formed in finite systems by interfer-
ence between the direct wave and the wave reflected from
the boundary. A common example is that of harmonic
standing waves in one-dimensional systems such as a string
fixed at both ends or an air column in a pipe. For deter-
mining an interference pattern, the phase difference ap-
proach is mathematically the simplest and intuitively the
most appealing. Accordingly, standard texts use this ap-
proach for deducing interference patterns in a wide vari-
ety of situations except, unfortunately, for standing waves.
The standard treatment is based on the resultant ampli-
tude A as a function of position x for a string fixed at
both ends calculated by superposing two waves with
displacements given by A, sin(kx - wt) and A sin(kx +
wt). While A(x)(= 2A, sin kx), thus obtained, gives the
correct internodal distance and (combined with the bound-
ary conditions) also the correct normal modes, students
often wonder why there is no reference to the phase differ-
ence (either due to the path difference, or due to reflection
at the boundary) between the interfering waves, a factor
which they have been told plays a crucial role in interfer-
ence. An equally crucial point is the omission of any ref-
erence to the finite size of the medium [which only enters
the calculation of the normal modes but not of A(x)]. All
that seems to matter for the formation of standing waves is
that the interfering waves be travelling in opposite direc-
tions. The treatment presented here is based on the famil-
iar approach of the calculation of the phase difference be-
tween the interfering waves, involving the finite size of
the medium at the very outset (§ 2). Since the phase dif-
ference between adjacent maxima (or adjacent minima)
must be 2p radians, the expression for the phase differ-
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ence immediately gives the internodal distance (§ 3) with-
out any reference to A(x). Next, in § 4, we consider three
systems:

(a)  astring fixed at both ends
(b)  an air column in a pipe open at both ends
(c)  anair column in a pipe closed at one end and open

at the other.

By combining the phase differences with the boundary
conditions we calculate the normal modes. This is fol-
lowed by the calculation of A(x). It would be seen that
the calculation of normal modes must precede the calcu-
lation of A(x) because the phase difference depends not
only on x but also on ¢, the length of the medium. Then, in
§ 5, we discuss the effect of multiple reflections from the
boundaries of the medium. Finally,§ 6 contains some con-
cluding remarks.

§ 2. PHASE DIFFERENCE BETWEEN THE DIRECT WAVE
AND THE REFLECTED WAVE

< the medium
0

T A x

X- |

> direct wave
<
reflected wave

Suppose the direct wave is represented by
y,(x,t) = A sin(kx - @t). H

Atany point x the reflected wave, interfering with the direct
wave, will have the following features:

(i) Thereflected wave travels towards the negative x
direction whereas the direct wave travels towards
positive x.

(ii)  The angular frequency ® and the wave number k

are the same for the direct wave and the reflected
wave.



(iii)  Before arriving at the interference point x, the re
flected wave will have travelled an extra distance
2(¢- x).

(iv) The reflected wave will have suffered a phase

change ¢, due to reflection at the boundary B. The

value of ¢, is either zero or m radians, depending

on the nature of the boundary. For each of the three

systems, mentioned in § 1, ¢, would be given its

appropriate value before analyzing the normal

modes and A(x) in § 4.
All of the features (i) to (iv) are incorporated into the re-
flected wave represented by!

Y,(x.t) = A, sin[kx + 2k(¢- x)- 0t + ¢]. (2)
Thus, the phase difference ¢ between the two interfering
waves can be written as

= 0x)=9,(x) + ¢, 3)
where ¢, is the phase difference due to path difference,
given by

¢, = 2k(¢- x). @)

§3. CALCULATION OF THE INTERNODAL DISTANCE
Interms of A, A, and f, the resultant amplitude A
is given by

A= VA?+A2+2AA cos ¢ )
Of special interest are points of maximum and minimum
values of A which, according to (5), are given by

MAXIMA 1¢1=0,2r, 4.
MINIMA | ¢l=7,37, 5.

In the context of standing waves, minima are called nodes?
(N), and maxima are called antinodes Ay

Since ¢, in (3)is independent of x, combining (6) and (7)
with (4) we find that the distance D between two adjacent
antinodes is equal to the distance between two adjacent
nodes, each being given by

2p = Ap = Ag = 2kD (8)

1 Note that by rewriting (2) as ¥,(x,t) = A, sin(2k¢ - kx - @t + 8), we
can see more clearly that the wave represented by (2) is travelling in the
negative x-direction.
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Using k =2z, from here we get
A
D=A2 )

Similarly, the distance d between a node and an adjacent
antinode is given by

T = Ag= 2kd,

or, d = M4, (10)

§ 4. NORMAL MODES OF VIBRATION

Normal modes of vibration are determined by using the
conditions imposed by the boundary. For a one-dimen-
sional system, at one of the two boundaries, the required
condition is automatically satisfied by the appropriate value
of ¢, (which is how @, is determined in the first place). At
the other boundary, the required condition is satisfied only
by imposing a restriction on the permitted wavelengths
(or frequencies). Wavelengths which obey the restriction
are called normal modes of vibration.

As mentioned in § 1, we will determine the normal modes
for three systems. In each case we will also calculate the
resultant amplitude A as a function of x.

(a) String fixed at both ends
In this case ¢, is @. So, from (3) and (4) we get

O=2k(¢ -x)+ = (1

Using (11), in (6) and (7) we get

MAXIMA 2K(¢ - X) =T, 3R, 5Tueeeeeerererrnn.
MINIMA 2k(¢ - x) =0, 27, 4T (13)
We require both boundaries x =0 and x=¢ to be nodes.
From (13), the boundary condition at x = ¢ is seen to be
satisfied automatically (by virtue of ¢,=m). For x=0 to
be a node, (13) requires’

2k¢ =2m, 4m, 6m................ , (14)

whichgives¢ =n A (n=1,2,3..). (15
2

For a given ¢, the restriction (15) on the permitted wave-
lengths gives the normal modes of this system.

2Itis evident from (5) that the amplitude at a node is zero only if A=A,

3 Note that 2k¢= 0 is not possible.
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Now, to determine A as function of x, we use (11) and
(14) in (5) whence we obtain

A(x)= VA +A,2-2A A, cos 2kx (16)
IfA =A,=A, (16) takes a simpler and a more familiar
form (using the trigonometric identity: 1 -cos 20 = 2
sin%0)

A(x)=2A Isinkx | an
Incidentally, using (11) and (14) in (2) we also notice that
the reflected wave is indeed correctly given by

¥,(x,0) = A, sin(kx + t); (18)

the form used in the standard treatment of standing waves.

However, in order to arrive at (18) we must use the condi-
tion (14) for the normal modes, rather than the approach
used in the standard texts where (18) is used in order to
derive A(x) and whence at the normal modes.

(b) Air column in a pipe open at both ends
In this case ¢, =0 which gives
¢ = 2k(¢- x). (19)

Both boundaries are required to be antinodes, governed
by (6). At x =¢, the requirement of the antinode is auto-
matically satisfied (by virtue of ¢, =0). Atx =0 the
requirement of the antinode once again leads to (14) and
(15) so that the normal modes of this system are the same
as those of (a). However, since (11) of (a) is different

from (19) of (b), (16) and (17) for A(x) are replaced,
respectively, by

A(x)=VA ?+A2+2A A, cos 2kx (20)
=2A lcoskx | if A=A, =A,  (21)

Also, (18) is replaced by
y, (%) = -A, sin(kx + ). 2)

4 This point is intuitively obvious but can also be proven in detail as
follows:
By following the same argument as in § 2 for f,,, (which stands for the
phase difference between W and R ), we can see that
¢WR2 = ¢R R, =¢R4R6
Ok, =Fop, =9
="RRR, = 3R§ =TRR
=2ke +¢9+ ¢,

7
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Note that in this case the sign of y, is opposite to that used
in the standard treatment of standing waves.

(c) Air column in a pipe open at one end and closed
at the other

x=0 x=¢

e X >

> direct wave
<
reflected wave

In this case ¢, = so that (11), (12) and (13) of (a) apply
also to (c). Furthermore, as in (a), the requirement that the
boundary x = ¢ be a node is automatically satisfied by
virtue of ¢, =n. However, since now the boundary x = 0
is required to be an antinode (whereas in (a), x =0 was a
node), the normal nodes in (c) are obtained with the help
of (12):

2kE=T0, 31, STueeeerecereeeenen, (23)
or, ¢=nX (n=1,3,5.) A 24)
4 4

Using (11) and (23) in (5) we find that (20) and (21) for
A(x) and (22) for y,(xt), found in (b), also apply to (c).

§ 5. THE EFFECT OF MULTIPLE REFLECTIONS

If we denote the direct wave by W and the successive re-
flected waves by R, R,, R, ... (where R denotes a wave
which has undergone n reflections), the resultant wave is
obtained by the superposing W, R, R, R, ...

The result of this superposition can be seen easily by rear-
ranging the different contributions as (W +R)) + (R, +
R)+R,+R)+ and by noting that each successive
term in this sum is in phase* with the previous one. Thus,
the resultant amplitude is simply the sum of the ampli-
tudes of (W+R)),(R,+R), (R,+R)etc,, i.e., multiple
reflections only reinforce the interference pattern produced

.........

where ¢, is the phase change on reflections at the boundary x = 0.

In (a) and (b), 2k¢ = even multiple of p. In (a).$, = ¢, ==;

in (b), ¢, = ¢’, = 0. In (c), 2k¢ = odd multiple of 1. ¢, =7 and ¢’ =0.
Thus, in (a), (b) as well as (c), we find that (W, R,, R,...) are in phase,
and so are (R, R, R;...).



by (W + R)). Of course, each reflection being partial, the
amplitude of successive reflections becomes progressively
smaller.

§ 6. CONCLUDING REMARKS

We have shown that all aspects of standing waves in one-
dimensional systems can be deduced on the basis of the
phase difference between the direct wave and the reflected
wave. The treatment also brings out more clearly the role
played by the finite size of the medium, an element crucial
to the formation of standing waves. As an added bonus,
we are also able to see that the effect of the ever-present
multiple reflections is simply to reinforce the interference
pattern formed by the direct wave W and the wave R, which
suffers only one reflection.
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The approach used in the standard texts is inadequate in
many respects, including a complete lack of justification
for writing the reflected wave as A, sin(kx + ot), for the
string and -A sin(kx + ot) for the air-column. Students
already use the phase difference approach in numerous
examples of interference such as double slit, thin films,
interferometers, diffraction grating etc. So, why not use
the same for standing waves, especially in view of the sim-
plicity of the accompanying mathematics?
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