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SUMMARY

Anovelapproach to the development of instruments
for testing conceptual structures. Aswe move from
fact-based éducation towards conceptual develop
ment, teachers, for whom discipline-specific tests
ofstudent recollection offacts oralgorithms are rou
tine, must learnto test for conceptualstructures as
well. This présentationoutlinesa methodology that
makes the development and use ofsuch instruments
relatively quickand easy.Thus, theirusagecould be-
come common practice, encouraging students to
focus on understanding, and enabling teachers to
estimate the "proximal learningzone".

WHAT IS A KNOWLEDGE STRUCTURE?

If weare to discuss changes in student knowledge struc
tures we must begin with a définition of the term "knowl
edge structure". We use this term to describe an individu-
al's overall organization of knowledge. Thisincludes both
factual information and thelinks between différent pièces
of information. A simplistic analogy mightbetothink ofa
human knowledge structure as thehuman équivalent ofa
computer database, filled with records and structured by
multiple indexes that tierecords together indifférent ways
andso allow access to records in différent ways. We use
theterm "mental model" todescribe a mental représenta
tionofa spécifie object oraconcept, e.g., themental model
ofa vector, and itsconnections toother concepts, within a
knowledge structure. Simplistically, a mentalmodel is the
analogue of a record orentry in thedatabase, along with
its links to other records. We refer to changes in the stu
dentknowledge structure asconceptual change and sothis
too requires a définition.

WHAT ISCONCEPTUAL CHANGE?

Rote Learning = No Conceptual Change
When a student encounters new concepts or a new
conceptualization ofideas seen before, conceptual change
may not take place. The studentmay simplyfile the new
concept away andmake little or noattempt to integrate it
with current knowledge. In terms ofour database analogy,
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in this case a new entry or record is created in the data-
base,but fewif any indexesare updated, and no newtype
of indexing is contemplated. Thus, the new information is
isolated in the knowledge structure/database and so it will
be difficult to access or retrieve this new information un-
less cued by circumstances virtually identical to those
présent at the time of storage. As teachers we witness this
approach to learning in science ail too often. Students drill
themselves inexamples, and if asked thatexact question,
présent a perfect response. However, if the example is
changed even a small amount, so that to the teacher the
question may appear unchanged, nevertheless, to the stu
dent it is a complète new problem and cannot be solved.

Meaningful Learning = Conceptual Change
In contrast, whenthe studentnotonlyaddsthe newinfor
mation to theirknowledge structure, but intégrâtes it into
theexisting structure, orevenrestructures existing knowl
edge to accommodate the new knowledge, then concep
tual change has taken place. In terms of our database anal
ogy, a new entry is made in the database, most or ail in
dexes are updated to include the new entry, and perhaps
new indexes are initiated. Thus, the new information is
well connected to older information and can be retrieved
inawide variety ofcircumstances. Unfortunately, asteach
erswewitness thistypeofbehaviour lessfrequently. Stu
dents must probe theirunderstanding ofnewmaterial, seek-
ingto compare andcontrast to earlierexpérience, andac-
tively create links orrelationships toearlier understandings.

OurPAREA research project, Changes in Student Knowl
edge Structures in Science, isprincipally aimed attesting
stratégies thatcanbeusedin theclassroom byail teachers
to elicitconceptual changein students. However, if one is
to measure the effectiveness of such stratégies, one must
begin bydetermining student knowledge structures, at least
in an area being covered in the classroom. While a knowl
edge structure isadynamic thing, the best wecan hope for
isa static measurement, a snapshot or x-ray of that struc
tureat a given moment in time. In theory at leastthe tests
that we ailgive inourclassrooms attempt todo just this.
Unfortunately, research byHalloun and Hestenes (1985)
has shown that there is little corrélation between scores on
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such classroom achèvement tests and more elaborate tests

designed specally to détermine student understanding of
concepts.

SOME STANDARD TECHNIQUES USEDTO CAPTURE

KNOWLEDGE STRUCTURES

Structured Interviews

A standard technique used to measure student knowledge
structures is the structured interview. While this technique
is generally accepted as effective, it is expensive of both
time and effort, for both teacher/researcher and student.
Thus, experiments that use this technique must be small in
size and thereby diminishing the power of their results.
Worse, such a technique would be impossible for teachers
to use on a regular basis in their classrooms, and so has
narrow applicability outside the artificial world of expéri
mentation.

FITS (Fill-ln-The-Structure)

In 1994Naveh-Benjamin & Lin suggested a technique that
seemed much more time and cost effective. They présent
each student with a concept map from which some con
cepts are missing at différent levels of a hierarchical struc
ture, and provide a list of concepts, mixed with distracter
concepts. The student task is to fill in the missing con
cepts from the list. To use this technique in the classroom,
one must adapt FITS to the domain taught and then de-
velop évaluation criteria. The évaluation criteria centre
around a comparison of student maps and those of the re-
searchers/experts. We had little difficulty with the notion
of adapting FITS to the domain of Physics, but our efforts
stalled when we attempted to develop évaluation criteria.
The measures used by Naveh-Benjamin & Yin were: con
tent similarity, or % of concepts "correctly" placed; hier
archical structure, or the % of concepts placed in the ap-
propriate level of the hierarchy. Our problem was that our
expert knowledge structures, as presented in concept maps,
were not unique. This made both of the measures some-
what arbitrary.

Pathfinder

In 1981 R. W. Schvaneveldt and F. T. Durso proposed an
algorithm for generating concept maps automatically from
proximity matrices that encode the distances between con
cepts. Subsequently, they generated the computer program
Pathfinder to automate this process. They, and others, hâve
used this program in a process to measure knowledge struc
tures. They begin by giving students a list of concepts and
the students are asked to rank proximity or closeness of
the concepts on a scale from 1 to 8. Thèse values are en-
tered into a symmetric matrix whose rows and columns
represent the concepts. The Pathfinder software then con-
verts the proximity matrices into concept maps. Subse

quently the software analyses the différences between stu
dent and expert maps to assess similarity of knowledge
structures. Two measures are involved: C and r. C is the

degree to which the a node in the expert concept map and
in the corresponding node in the student concept map are
surrounded by similar neighbourhoods of nodes, averaged
across ail nodes in the maps. The measure C varies from 0
for complementary concept maps to 1 for identical con
cept maps. The measure r is the coefficient of corrélation
for pair-wise distances between concepts. While we were
pleased with the automation of this process, and could
easily prépare lists pf appropriate concepts, adapting the
method to any topic, we were concerned, as with FITS,
with the possibilities for disagreements between experts.
Further, it seemed to us that student judgements of the
iclosenessî of any two concepts on a scale from 1 to 8
would be somewhat arbitrary. Thus, we struggled to fïnd a
way to make judgements clear, with "correct", "incorrect"
and "more incorrect" answers.

DEVELOPING OUR OWN "MOTION QUESTIONNAIRE"

Motion Concepts

We began with the notion that we could use some phrases
that expressed practical or real life expression of concepts
taught in the study of motion in Physics. For example, hère
are six from our original list of such phrases: A - there is
no net force acting on the car; B - there is a net force due
North acting on the car; C - a bail dropped from the car
falls straight down; D - a bail dropped from the car falls
along a parabolic path; E - the car is at rest; F - the car is
moving at constant speed due North. Instead of asking stu
dents to décide how closely thèse concepts were related,
we decided to hâve them choose which of four relation-

shipsthe conceptssatisfied. That is, with one of the phrases
acting as "statement a" and another as "statement b", stu
dents would be asked to choose: 1 = "a" implies "b";
2 = "a" may imply "b"; 3 = "a" is unrelated to "b"; or,
4 = "a" cannot imply "b". With n phrases considered in
ail possiblepairings, this would generate n2 questions, and
an «xn proximity matrix. We hâve now been through at
least six versions of phrases and différent wordings for
student choices. While we hâve no statistical data to re

port, we do hâve preliminary observations, which in part
explain the multiple itérations.

PRELIMINARY RESULTS

We ran our initial versions of the Motion Questionnaire
onsmall numbers ofstudents selectedcbnveniently as they
studied at the Science Resource Centre, that members of
the research team staff and run at Vanier Collège. We im-
mediately discovered that both the number of questions
and theirrepetitivenesscaused confusion amongst students.
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Thus, we limited the number ofconcepts addressed at one
time, and removed many of the more obvious questions to
avoid répétition.

As we tested further, we noticed that subtle différences in
the types of relationships offered in the four choices,and
simple wording changes caused disproportionate confu
sion amongst students. Werealized that we would hâve to
train, or at a minimum, expose students to this new kind of
testing in advance.Further,a number of itérationsin word
ing were required to more clearly express the relationship
choices and their directionality.

Even with such attempts, it became clear that there are
real problems in student understanding of if... then type
logical statements. To us it appears that we will need to
train students in elementary logic.

Despite ail of the above problems, by means of post-test
interviews, we clearly ascertained that some incorrect an-
swers were due to conceptual difficulties.

CONCLUSIONS

Interviews showed that some of the errors captured were
misconceptions, so there is hope that this mode of testing,
once mastered, can isolate and identify such misconcep
tions. Thus, our future plans include:

m.

iv.
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showingmorehumilityand respectfor social sci
entists who on a regular basis generate measures;
trainingstudentsin logic and thèse kindsof ques
tions (both of which we feel are désirable on their
own);
testing the effectiveness of training;
continuing modification of our questionnaire, run
ningmorepilot tests accompanied by interviews.
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